Enabling Collaborative Chip Design in the RISC-V VeeR Core and Caliptra RoT Project with CHIPS Alliance Tools

RISC-V Summit Europe, Barcelona, 2023-06-07
Karol Gugala, kgugala@antmicro.com
Matt Cockrell, mcockrell@google.com
CHIPS ALLIANCE

- Organization which develops and hosts:
 - Open source hardware code & specs -> open source CPUs, I/O IP, interconnects, ML
 - Open source ASIC & FPGA development tools -> design, verification, simulation, workflows
- A barrier-free environment for collaboration:
 - Standards organization framework for collaboration and development
 - Under governance of Linux Foundation
- Legal framework – Apache v2 license / OWFa
- Shared resources ($, code, practices, infrastructure and time) which lower the cost of hardware development
VEER

• Family of open source 32 bit RISC-V CPU cores
• Three options
 ▫ EL2 - tiny and low power core
 ▫ EH1 - high performance core
 ▫ EH2 - dual threaded successor to EH1
• All the variants are implemented with SystemVerilog
• RTL is heavily ASIC proven
CALIPTRA

- Open source integrated Root of Trust block
- Boot Media Integrated/Dependent variants
- Collaboration between Google, Nvidia, Microsoft and AMD within CHIPS Alliance (spec lives in OCP, implementation is developed in CHIPS)
- Aims to build a component easy to integrate with bigger SoC
- Uses VeeR EL2 CPU core
- Reuses a number of OpenTitan peripheral cores
CALIPTRA AND ANTMICRO

• Focus on enabling open source collaboration on the project for both current project partners and external adoption
• Took over maintenance of VeeR cores family
• Main goal: extended the Caliptra/VeeR ecosystem to cover not just RTL but also tools and test flows to enable open source collaboration:
 ▫ Tools for working with code
 ▫ System-level testing and integration
 ▫ Public-facing CI
VERIBLE

- Developed by Google and donated to CHIPS Alliance
- Open Source suite of SystemVerilog development tools
 - Linter,
 - Formatter,
 - Lexical diff, obfuscator, indexer...
 - Language Server
VERIBLE GH ACTIONS

- Linter and formatter actions
 - `chipsalliance/verible-formatter-action`
 - `chipsalliance/verible-linter-action`
- Super easy to integrate with any Verilog/SystemVerilog repository
 - Actions provide automatic feedback in PRs
 - Formatter provides code changes suggestions applicable directly from a PR
Verible provides LSP functionality

- **Documentation** provides information how to enable it for various editors
- We handle most of standard LFS features
- We also support AUTO-expansion (similar to Emacs Verilog-mode)
VERIBLE VS CODE PLUGIN

- For VSCode we have a plugin enabling this functionality
 - The plugin comes with Verilbe binaries for Linux and Windows
VEER TESTING

- VeeR cores family originally only included system level tests
 - More complex test suite was internal to the original authors and was not released as open source
- One of the most important goals here was to extend VeeR’s publicly available test suite with tests for specific core components
- Added public CI to the VeeR repo running those tests for every commit
- The suite includes code coverage reporting - the CI generates a summary webpage
OPEN SOURCE VERIFICATION

• Caliptra’s primary use case is integration into bigger SoCs
• The primary testing methodology is UVM based based on widespread use in founding organizations
• UVM simulations are not yet possible with open source tools only
• There is ongoing effort on enabling UVM simulation in Verilator
• For the time being, to enable open source collaboration for improving testing coverage, we added Cocotb and pyuvm testing which can be run completely open source in CI
RISCV-DV

- **riscv-dv** is an open source instruction generator for RISC-V processor verification
 - Originally developed by Google, donated to CHIPS Alliance
- To make it work with the current EL2 codebase, VeeR’s out of order div/rem block required special handling in the generator
 - We improved trace analyzer and code generator to handle the out-of-order division logic
- riscv-dv tests are now part of VeeR’s public CI
JTAG INTEGRATION

- For debugging the core, Caliptra added a JTAG interface, which needed its own end-to-end tests
 - The test connects to a simulated SoC with OpenOCD and runs typical debug scenarios
 - Run in public CI on GitHub with open source tools
- Verification showed an issue with accessing a peripheral from debug interface
 - The issue has been resolved and the case is now covered with tests
CUSTOM GH RUNNERS

- Verification flows require non-trivial amount of computing resources and runtime
- Standard runners available on GH cannot provide required resources
- Some verification tasks need to be run using proprietary tools
- Antmicro’s open source custom GH runners can spawn a number of required machines and delegate build/test tasks to them
- We support third party tools and licenses
 - Job results can be filtered to not leak proprietary information
- Open source and available on GitHub
LEARN MORE

- ORConf 2023
 - Munich, September 15-17
 - Register at orconf.org
- CHIPS Alliance Technology Update collocated with DAC
 - San Francisco, July 13th
 - events.linuxfoundation.org/chips-biannual-technology-update
THANK YOU FOR YOUR ATTENTION!