The European Chips Act

Enabling Chip Design in Europe

RISC-V Summit Europe

Matthew XUEREB
Policy Officer – Microelectronics and Photonics Industry
The European Chips Act
The EU Chips Act - rationale for intervention

- Uncertain geopolitical landscape
- Chips shortage
- Digital transformation

Need for public support for R&D together with industrial policy

Chips Act

- Union programmes
- Member State support
- Industry
- RTOs + Academia
- International partners
Why this time it’s different…

<table>
<thead>
<tr>
<th>Before</th>
<th>Post-Chips Act</th>
</tr>
</thead>
<tbody>
<tr>
<td>• Focus primarily on R&D</td>
<td>• R&D support with a focus on industrialisation and capacity building</td>
</tr>
<tr>
<td>• Below critical mass investment</td>
<td>• Reinforced public investment</td>
</tr>
<tr>
<td>• Dispersed policy initiatives amongst Member States with no common</td>
<td>• A synchronised pan-European approach that allows for complementarity across</td>
</tr>
<tr>
<td>policy framework</td>
<td>the Union</td>
</tr>
<tr>
<td>• Limited common European infrastructure</td>
<td>• A clear industrial policy for semiconductors that builds on strengths and</td>
</tr>
<tr>
<td></td>
<td>ventures into new domains</td>
</tr>
</tbody>
</table>
Three pillars of the Chips Act

Pillar 1: Chips for Europe Initiative
- to establish large-scale technological capacity building and innovation across the EU
- Support to start-ups and SMEs

Pillar 2: Security of Supply
- First-of-a-kind semiconductor production facilities

Pillar 3: Monitoring and Crisis Response
- Monitoring and alerting
- Crisis coordination mechanism with MS
- Strong Commission powers in times of crisis
Chips for Europe Initiative

Problem statement

• The EU’s research programmes have largely not driven the conversion of its excellent research results into industrial innovation.
• SMEs and start-ups have difficulty attracting the necessary investment.
• The EU has a limited pool of talent and lacks a workforce with the necessary skills.

Measures to help bridge the gap to market are required.
Chips for Europe Initiative
Aim: bridging the gap from lab to fab

1. Reinforce design capacity by providing a virtual design platform
2. Enhance existing and developing new pilot lines
3. Accelerate the development of quantum chips
4. Expand skills and set up a network of competence centres
5. Facilitate SME access to equity and loans through a dedicated Chips Fund
Chips for Europe Initiative
Bridging the gap from lab to fab

Suppliers
- Equipment
- Materials
- Tools
- Services

Users
- SMEs
- System Houses
- IDMs
- RTOs

Skills Initiatives
- Competence Centres

Design platform
- EDA tools
- Design libraries
- Quantum Tools/IP

Pilot Lines
- PL 1
- PL 2
- PL n
- Quantum Pilot

Manufaturers
- Fabs
- Packaging
- Assembly
- Testing
Design Platform
Design costs for fabless companies

- Chip design is expensive, and soaring in advanced digital ICs
- High upfront costs, over 1/3 is not related to development (licensing, prototyping, IT)

Cost of logic chip design

For low and high complexity digital IC designs

Source: McKinsey 2022

Fabless start-ups must face high costs before getting any revenues
Foster the development of the semiconductor **design ecosystem** in EU, reinforcing capacity to innovate and create European IP through IC design.

Main scope

- **Reduce entry barriers** and **admin burden** for EU companies engaging in chip design
- **Facilitate access** to pilot lines and foundries
- Foster **collaboration** among EU stakeholders, also on new IP and tools (incl. open-source, quantum)
- **Access** to network of **competence centres** offering **training** and support to boost design skills

Instrument

Develop a **virtual design platform**, offering **cloud-based** access to tools, libraries and support services to accelerate development and reduce time-to-market.
Added value

- Easy access to tools & IP on the **cloud:**
 - No upfront CapEx for on-premise IT infrastructure
 - Maximum computing **scalability** for simulation and verification
 - High level of **security**, fully audited
- **Streamlined process** with framework agreements
- Access to virtual **prototyping**, MPW and foundry services
- **Competence centers** offering training and support
Design Platform Working Group

Includes key stakeholders: EDA tools & IP vendors, RTOs, IDM, design houses, system houses
12 meetings held, including workshop on cloud

Goal:
• discuss services, architecture, implementation;
• report with recommendations and roadmap, as basis for specifications by technical experts
Design platform
Working Group Proposal

Competence Centres
- Training
- Access
- Support

Central Platform Services
- Accelerator program
- User onboarding
- License mgmt.
- Access mgmt.
- Infrastructure & SW Development
- IP Exchange (incl. open-source)
- IP/Tool validation / QA
- Requirements & standards

Design Enablement Services
- Design flow management
- Expert implementation support
- Tape-out support
- Rapid adoption kits

Cloud access

IP Suppliers EDA

PDK Fabs Pilot lines

TARGET USER GROUP

Academia Start-ups SMEs System Companies IDM

14
Design Platform Proposal – zooming in

User 1
Virtual Desktop
- User Data
- User Flows

User 2
Virtual Desktop
- User Data
- User Flows

Design Enablement Team
- Technical support to user
- Customisation of design environment
- Manage interoperability of tools
- Flow set-up + optimisation
- Deploy IaC

Shared Design Resources
- PDKs
- IP

Grid Computing

Platform Coordination Team
- Verification of users
- Access management
- Develop IaC
- Quality assurance
- Validation and verification of IP
- Integrate components and tools
- EDA License Management
- Open Source IP
- Licenses
Open Source Hardware in the Design Platform

User 1
- Virtual Desktop
 - User Data
 - User Flows

User 2
- Virtual Desktop
 - User Data
 - User Flows

Design Enablement Team
- Technical support to user
- Customisation of design environment
- Manage interoperability of tools
- Flow set-up + optimisation
- Deploy IaC

Shared Design Resources
- PDKs
- IP

Grid Computing

Platform Coordination Team
- Verification of users
- Access management
- Develop IaC
- Integrate components and tools
- EDA License Management

Industrialisation
- Develop interoperability framework
- Quality assurance
- Validation and verification of IP

Open Source IP
- Licenses

Shared virtual repository

Run EDA tools + enable emulation and simulation of potential (RISC-V?) design
The platform will offer all SMEs:
- easy click-through licensing, reducing contract negotiations time
- scalable computing resources through cloud access
- easy access to training, expert support, tools, vast IP repository

Accelerator programme:
- through Chips JU competitive calls, SMEs with innovative, advanced designs in pre-competitive stages of development can be selected
- the chosen projects can get ‘vouchers’ for tool/IP licensing, valid up to prototype implementation (*proof of concept*) – thereafter commercial license agreement
- Member States can allocate budget to support SMEs under the programme
Enabling users through choice

Tiles and options are only examples – eventual implementation may include a different number and type of resources.
Design Flows

- Standard and supported, developed by PCT and DETs in sync with EDA vendors.
- To accelerate the design flow selection process for users, the Design Platform will provide a neutral view on available design flows, with their supported features and service levels.
- Multi/mixed-vendor and covering all domains.
The platform will offer both commercial grade IP and also other IP contributed by academia and the open-source community.

Open-source IP can be sourced from currently ongoing KDT JU projects, such as TRISTAN, ISOLDE etc. and other sources.

Platform will facilitate verification and validation of IP.
• Facilitate access to PDKs and foundation IP from foundries.

• Ensures rapid design and allows users to have a more customised environment that better suits the needs of the user.

• Contribute to the development and maintenance of technology specific reference design flows and assists users in accessing the supply-chain.
• Vendors will be enabled to provide tool-specific training via the platform.

• Address re-skilling e.g. of software developers, physicists etc.

• Ensure synergies with Network of Competence Centres and provide a common platform from which users can access training in different Member States.
EC RISC-V Roadmap
Recommendations and Roadmap for European Sovereignty in Open-Source Hardware, Software, and RISC-V Technologies

Key outcomes:

• Build a critical mass of European open-source hardware/software

• Develop both open-source hardware and software as they are interdependent

• Address cross-cutting issues

• Cultivate innovation

• Engage with the open-source community

Recommendations and Roadmap for European Sovereignty in Open-Source Hardware, Software, and RISC-V Technologies

• Open-source hardware is **a key sovereignty tool in line with Chips Act priorities**, providing Europe with an alternative to licensing IPs from non-EU third parties.

• A key success criterion for this is for Europe to develop **a fully blown open-source ecosystem**.

• This report has defined a strategic roadmap considering **short (2-5 years)**, **medium (5-10 years)** and **long term (>10 years)** goals.

• The success of the roadmap depends on European actors working closely together to **create a critical mass of activities** that enhance and expand the European open-source community and its influence on the world stage.
Recommendations and Roadmap for European Sovereignty in Open-Source Hardware, Software, and RISC-V Technologies

- Core implementations: ultra-low power, mid-range, high-end
- Accelerators
- Domain-Specific Architectures
- Peripherals for SoC
- EDA
- Software: compilers, debuggers, operating systems
Next steps – KDT/Chips JU

TRISTAN WP21 → ISOLDE WP22 → WP 24 ?

WP 27 ? ← WP 26 ? ← WP 25 ?
Thank you

Matthew Xuereb – matthew.xuereb@ec.europa.eu

© European Union 2023

Unless otherwise noted the reuse of this presentation is authorised under the CC BY 4.0 license. For any use or reproduction of elements that are not owned by the EU, permission may need to be sought directly from the respective right holders.