Iguana: An End-to-End Open-Source Linux-capable RISC-V SoC in 130nm CMOS

Integrated Systems Laboratory (ETH Zürich)

Thomas Benz
tbenz@iis.ee.ethz.ch
Paul Scheffler
paulsc@iis.ee.ethz.ch
Jannis Schönleber
janniss@iis.ee.ethz.ch

PULP Platform
Open Source Hardware, the way it should be!
Situation and Challenges

• **FOS RTL established**
 • Led to a major increase in hardware research output

• **FOS Synthesis + Backend**
 • Under development
 • Will be the **next frontier**

• **Fully open hardware?**
 • Caravel (Skywater) 10 mm²
 • Small designs, limited IO

• **What about European solutions?**
Our Contributions

• Implementing Iguana in IHP’s 130nm node
 • Tapeout through Europractice in July 2023
 • First end-to-end FOS ASIC capable of running Linux
 • Custom padframe allowing us full control over IO
 • IHP’s open European PDK and fab

• Building Iguana from industry-grade IPs
 • Cheshire SoC framework
 • Including 2 fully digital off-chip interfaces
 • HyperBus off-chip DRAM interface
 • Chip-to-chip link

• Providing full peripheral IO → Desktop Linux minicomputer
• Verifying Linux boot through FPGA and silicon demonstrator
Architecture

- **Goal**: Linux Desktop computer
- **CVA6**: RV64GC
- **AXI4 and Regbus used in interconnect**
- **AXI4-based last-level cache / SPM**
- **Peripherals**
- **Standalone boot**
 - SPI (SD Card – GPT)
 - I2C
- **FOS, digital-only, PHYs**
 - HyperBus off-chip memory interface
 - Chip-2-Chip link
The Cheshire Concept & Silicon Demonstrator

- **Iguana is built using Cheshire**
 - Silicon-proven Linux SoC framework, FPGA port
 - Parametrizable top
 - iHLS (IP-based high-level synthesis)
 - Template-based assembly of parametrizable IPs
 - Complex top-levels

- **Silicon Demonstrator**
 - Neo tapeout in 2021
 - TSMC 65nm node, closed toolchain
 - Similar SoC, different DRAM controller
 - Tested and is working standalone 😊
Our Flow: In-house Tools

- **Bender**
 - Source management
 - Script generation
 - Similar to FuseSoC
 - Resolve project dependencies

- **Morty**
 - Source pickler → single file, single context
 - Macro expansion

- **SVase**
 - Parameter and generate pre-elaboration
 - Human-readable simplification of SV
 - Uses the *slang* SystemVerilog parser

Additional Resources:
- [Bender](https://github.com/pulp-platform/bender)
- [Morty](https://github.com/pulp-platform/morty)
- [SVase](https://github.com/pulp-platform/svase)
Frontend: RTL to Netlist

- Bender and Morty to handle sources
- SVase: parameter elaboration & simplification
- SV2V to transform the remaining SV constructs
- Yosys synthesis

github.com/MikePopoloski/slang
github.com/zachjs/sv2v
github.com/YosysHQ/yosys
Backend

- OpenRoad and Klayout

- Custom TCL-only flow
 - Based on our traditional flow called “cockpit”
 - Simpler, in-line with our teaching
 - Inspired by the OpenRoad flow scripts

- Top-down design hierarchy
 - Most of the area is occupied by CVA6

- High turnaround time of ~33h
 - Many steps are single-threaded
Results

- Contribution to the FOS Flow
 - Bugfixes and improvements to the tools
 - Demonstrate a complex FOS design
 - Improve IHP’s open standard cells
 - Hackathon at ETH
 - Cooperation with HS RheinMain

- Targeting fully-open GDS
 - SRAM macros and I/O cells are still closed
 - Opening imminent
 - 40mm² in IHP 130nm
 - > 50 MHz (WC, conservative)
Conclusion and Outlook

• Linux-capable RV64GC RISC-V SoC
• FOS off-chip DRAM and chip-2-chip link
• Industry-grade SystemVerilog IPs
• OpenRoad backend with “cockpit” flow
• Tapeout through Europractice in July 2023
 • First end-to-end FOS Linux-capable ASIC
 • Establish FOS flow for complex designs
• Future Tapeouts are planned
 • Tegu and Komodo: will carry scientific work loads
 • Multicore CVA6, real time SoC, side channel prevention

2023 RISC-V Summit Barcelona