

RISC-V Is Firing On All Cylinders

Charlie Su, Ph.D. CTO and President

2023/06/06

Andes Technology Corporation

Andes and RISC-V International (RVI)

- Founding & Premier Member from 2016
 - Board of Directors
 - Technical Steering Committee
 - Chairs/Co-Chairs of Task Groups
 - Ambassador

Quick Facts

18 Years300+ CustomersPureplay CPU vendorLicensing AndesCore™

80K⁺ Users AndeSight IDE **12Bn⁺** SoC Total Customer Shipment

ANDES Confidential

AX60 Series 13-stage OOO MP		AX65	AX67	AX60-SE	A72~A78; N1/V1/X1				
Categories	Power-efficient	Mid-range	Extended	FUSA					
45 Series 8-stage Superscalar	N45, NX45	<mark>NX45V*</mark> D45	<mark>AX45MPV</mark> A45(MP), AX45(MP)	D45-SE	A53/55, R52/ R82, M7				
27 Series 5-stage MemBoost		NX27V	A27(L2), AX27(L2)		A5/7/35				
25 Series 5-stage Fast&Compact	N25F, NX25F	D25F	A25(MP), AX25(MP)	D25F-SE N25F-SE	A5/7/35, R4/5, M4/33				
Compact Series	N225	D23		D23-SE	M0/0+/3/33/4				
Categories	Embedded Control	DSP/Vector	Linux AP	FUSA	References				
Note *: AX45MPV configured as one core									

Andes Powering RISC-V Applications Everywhere

N25F, N45

Edge. Cloud. Space.

20 Detworks

N25F, A25, A45MP, AX45MP

N25F

Taking 🔀 RISC-V* Mainstream

AIOT

Renesas Voice-Control ASSP Solution

- R9A06G150 32-bit 100MHz ASSP with Andes DSP-capable D25F, which speeds up the application by over 50%.
- Cyberon, an expert in voice recognition technology
- **Orbstar**, a system integrator specializing in embedded solutions
- SEGGER, supporting the ASSP with Embedded Studio and J-Link

ASUS IOT <u>Tinker V</u> Single-Board Computer:

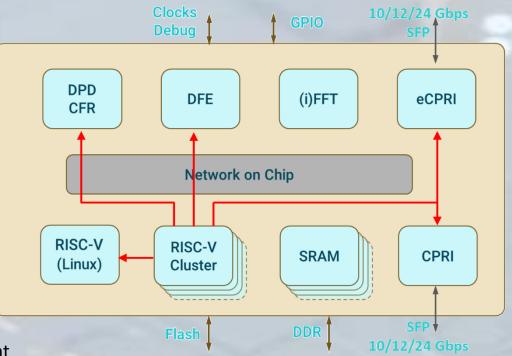
- Based on Renesas RZ/Five 1GHz SoC with Andes AX45MP
- Supporting Linux Debian and Yocto distro with rich connectivity
- Ideal for Industrial IoT and gateway applications

Powered by Andes D25F/AX45MP

Taking 🛃 RISC-V* Mainstream

5G Small Cell SoC for Open-RAN

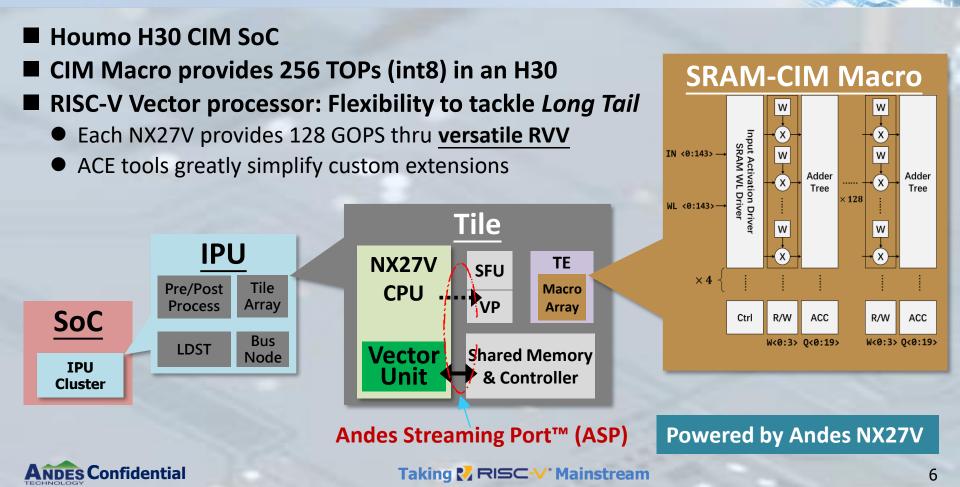
Picocom PC80x uses RISC-V Clusters and Linux core


4-lane

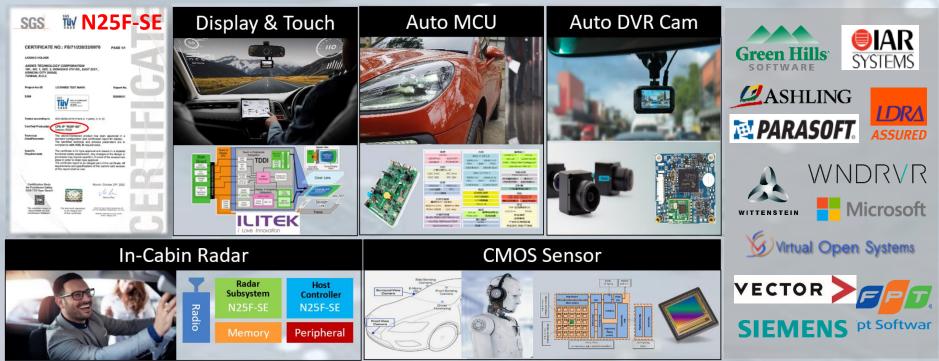
JESD204B

- Low power
- Flexible control for
 - Task scheduling
 - Memory management
 - Event handling
- Computation assistance for
 - DFE (Digital Frontend)
 - DPD (Digital Pre-Distortion)
- Support protocol/interface upgrades
 - CPRI (common public radio interface)
 - eCPRI (enhanced CPRI)

Friendly development environment:


Zephyr and Linux for application development

Powered by Andes N25F/A27



Compute-in-Memory (CIM) SoC

RISC-V Is Driving Innovations

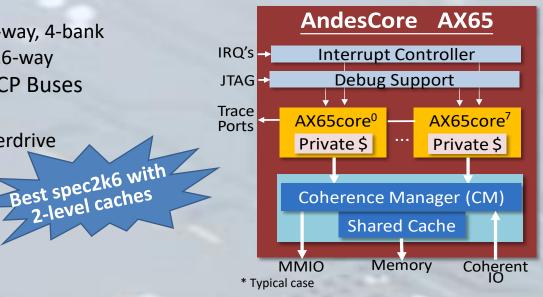
with Industry's 1st RISC-V ISO 26262 Fully Compliant Core, Andes N25F-SE
 Isn't possible without partners for compilers, tools and RTOS/AutoSAR

Taking 🛃 🛛 🖓 🖓 Taking 🛃 🖓

AndesCore[™] AX65 OOO Application Processor

- 13-stage 4-way 64-bit OOO processor
 RVA22 profile
- Multicore cluster up to 8 cores
- 8 Execution Pipes: 4 ALU, 2 LD/ST, 2 FP
- 2-Level BTB with TAGE-L Branch Predictor

• Caches:


- Private I/D caches: 64 KB, 4-way, 4-bank
- Shared cache: up to 8 MB, 16-way
- 256-bit AXI4, MMIO and IOCP Buses
- Performance:
 - 2.4 GHz^{*} @7nm without overdrive
 - Specint2006: 8.25/GHz
 - Specfp2006: 10.2/GHz

• AX67:

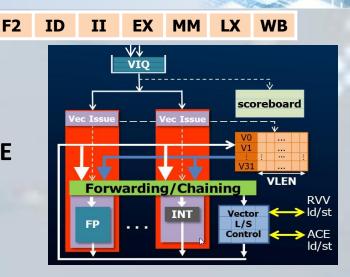
- Further performance boost
- RVA23 (or RVA24)

<u>B1 F1 F2</u>	<u>D1 D2 D3</u>	<u>I1</u>	<u>12</u>	<u>E1</u>	<u>E2</u>	<u>E3</u>	<u>E4</u>		
				ALU	WB	x3			
batch, fetch, align & buffer	decode, rename,	issue, register read	+br & misc		WB	x1			
	dispatch		m e	mo	r y	WB	x2		
				floating point		nt	WB	x2	

Taking 🔀 RISC-V* Mainstream

AX45MPV: 1024-bit Vector Processor

RISC-V Vector Extension (RVV v1.0)


- data format: int8~64, fp16~64; int4, bf16
- VLEN/DLEN: 128~1024 bits, 1:1 or 2:1 ratio
- Up to 6 DLEN results per cycle


Efficient support needed for tight coupling with HWE

Data exchange performance (from/to shared memory in HWE)
 Efficient control to the HWE

2 solutions offered in AX45MPV:

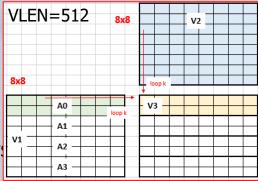
- Andes Streaming Port[™] (ASP) thru ACE
 - Data bus: data transfer btw VR and HWE
 - Command bus: to control/synchronize HWE operations
- HVM: High-speed Vector Memory
 - CPU side: DLEN-wide load/store interface with dynamic wait cycles
 - HVM module: accepting multiple accesses to multi-bank SRAM's

Andes Vector Core Memory Scalar A Subsys. Scalar A V P U P HVM

Taking 🔀 RISC-V° Mainstream

F1

Matrix Multiplication Extension


- To speed up MatMult
- Some common goals:
 - High compute-to-memory ratio
 - Leading to high MAC utilization
 - Input/output registers: existing VRF and/or new (matrix) registers
 - Scalability: VLEN-agnostic at the binary or source level
- Less-addressed issues:
 - Matrix register file: more usage to be explored if used
 - Boundary-case handling: several instructions needed to compute 2D mask

VLEN 128

 Solutions to enable both inner-product or outer-product based computation sequence to defer the cost/performance tradeoff (from IP to IC)

VLEN=256

RISC-V Continues to ARISE Rapidly

- RISE: RISC-V Software Ecosystem, a project under LF Europe
- To accelerate the development of RISC-V open source SW
- Led by industry leaders
- Areas to focus over time:
 - Compilers & Toolchains
 - Language Runtimes
 - System Libraries
 - Debug & Profiling Tools
 - Simulator/Emulators
 - Kernel and Virtualization
 - Linus Distro Integration
 - System Firmware
- More at https://riseproject.dev

PRISC L Thank You !

