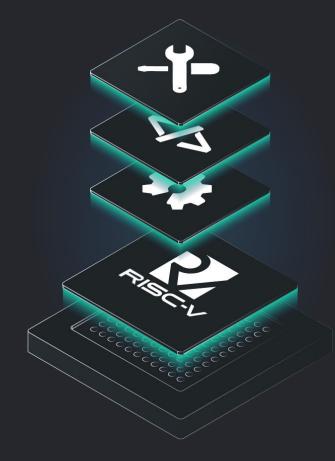
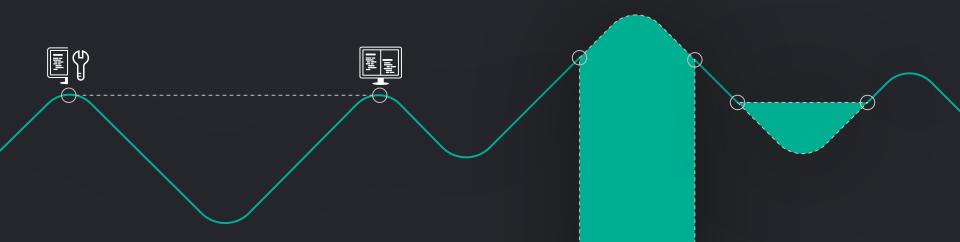


RISC-V Summit Europe, Barcelona, 2023-06-06 Michael Gielda, mgielda@antmicro.com

Fragmentation? More like augmentation



Helping customers adopt RISC-V since 2015



Crossing all levels of the tech stack, enabling vertical integration

Always improving the open source landscape, connecting, documenting, filling the blanks

RENODE

common denominator, making all hardware virtual

RISC-V and Antmicro's Visual System Designer:

Using SW data and structure to test software at scale

Q Search	273 PASSED	268 PASSED	260 PASSED	265 PASSED	249 PASSED	102 PASSED
BOARD NAME	HELLO WORLD	PHILOSOPHERS	SHELL MODULE	TENSORFLOW LITE MICRO	MICROPYTHON	BLINKY
LiteX SoC with VexRiscV softcore CPU	PASSED	PASSED	PASSED	PASSED	NOT BUILT	NOT BUILT
M5Stack STAMP-C3	BUILT	BUILT	BUILT	BUILT	BUILT	NOT BUILT
Microchip M2GL025 with MiV target	PASSED	PASSED	GENERATED	NOT BUILT	GENERATED	NOT BUILT
Microchip PolarFire ICICLE kit	PASSED	PASSED	PASSED	PASSED	GENERATED	GENERATED
NEORV32 Processor (SoC)	BUILT	BUILT	BUILT	NOT BUILT	NOT BUILT	BUILT
OpenTitan Earl Grey	PASSED	PASSED	PASSED	PASSED	NOT BUILT	NOT BUILT
RV32M1-VEGA (RI5CY)	BUILT	BUILT	BUILT	BUILT	BUILT	BUILT
RV32M1-VEGA (ZERO-RISCY)	BUILT	BUILT	BUILT	BUILT	BUILT	BUILT
SiFive HiFive Unleashed	PASSED	PASSED	PASSED	PASSED	PASSED	NOT BUILT
SiFive HiFive Unmatched	PASSED	PASSED	PASSED	PASSED	PASSED	NOT BUILT
SiFive HiFive1	PASSED	PASSED	PASSED	PASSED	PASSED	GENERATED
SiFive HiFive1 Rev B	PASSED	PASSED	PASSED	PASSED	PASSED	GENERATED

RENODE

SiFive HiFive Unleashed

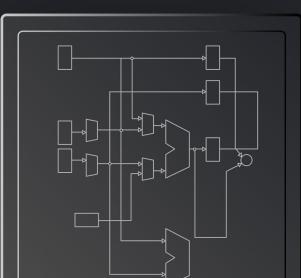
D7	U540		
	System on Chip		

SiFive Vendor

MicroPython fe2a833-dirty on 2023-05-31; zephyr-hifive_unleashed with unknown-cp

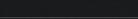
Take this to the next level: Renodepedia

Software Hardware Peripherals	
Samples	MicroPython
HELLO WORLD A simple sample that prints "Hello World"	This demo demonstrates the MicroPython Zephyr port by performing arithmetic operations, and by defining
SHELL MODULE > Zephyr shell interface demonstration	You can run the MicroPython demo on the SiFive HiFive Unleashed board by following the instructi Python 3 and pip installed on your Linux machine, run the following commands to download Renode a demo, and then run the simulation in Renode on your own machine:
Solution to the Dining Philosophers problem	pip3 installuserupgrade git+https://github.com/antmicro/renode-run.git renode-run demo -b hifive_unleashed micropython
TENSORFLOW LITE MICRO Solution to the Dining Philosophers problem	
Solution to the Dining Philosophers problem	C Run in Colab
LED blinking using the Zephyr GPIO API	Google Colab Run HiFive Unleashed Micropython demo in Colab
Supported software	E UART output
	*** Rooting Zenbur OS build 6789-88448842 ***



But software needs hardware...

... and hardware is all about structure

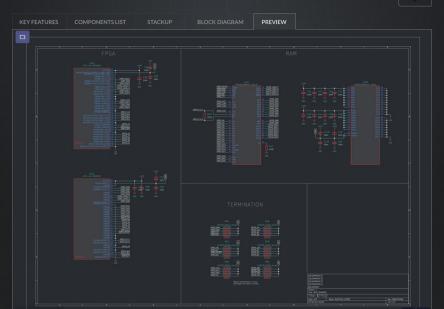


From the structure, the Open Hardware Portal was born

Open source components database with KiCad footprints and Blender models

Interactive schematics viewer

SDI TO MIPI CSI-2 CONVERTER

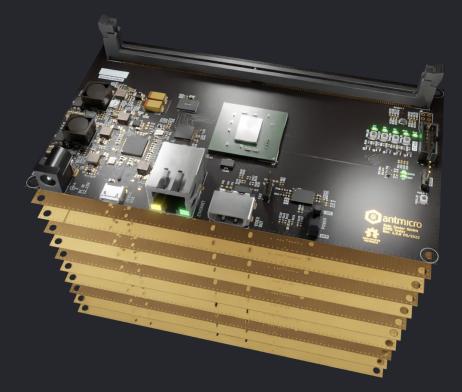

antmicro

Antmicro's SDI-to-MIPI bridge, based on the <u>Lattice CrossLink-NX</u> FPGA that allows SDI-based systems to harness the power of embedded AI platforms.

It allows you to connect SDI inputs over long distances using a single coaxial cable to the otherwise short-range (but extremely popular and widely available) MID CSI-2 interface. The board has enabled various customer projects where the bridge is used together with Antmicro's MIPI CSI-2 capable open hardware platforms, including the NVIDIA Jetson Baseboard or Snapdragon B45 Baseboard.

You can read more about the board in this Antmicro blog note.

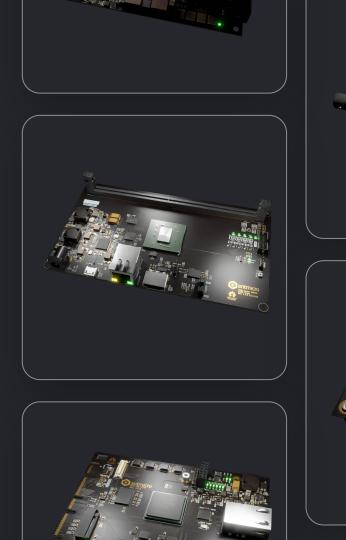
o 门 🛛 Go to Open Source portal 🗍

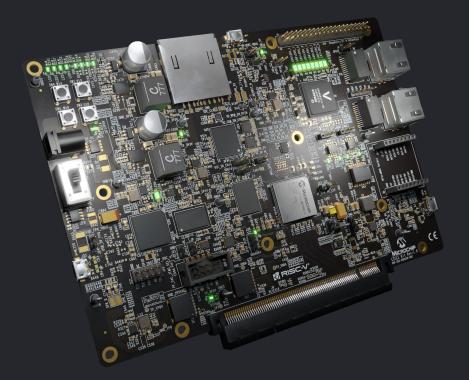


1

1

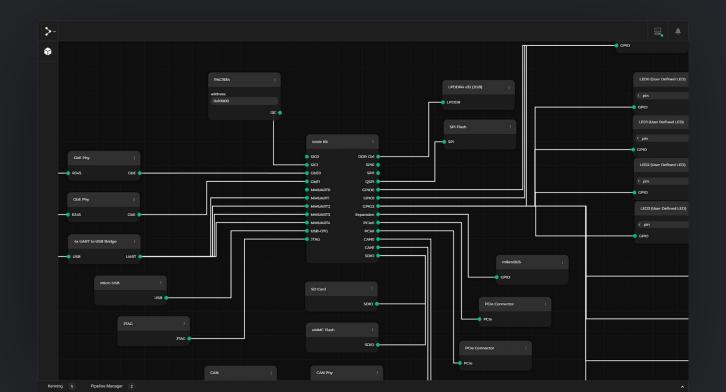
1


1.0

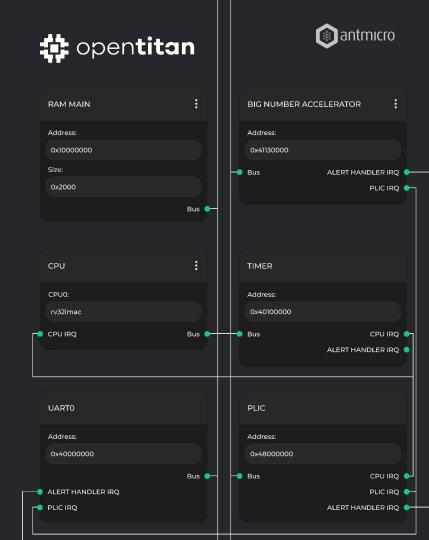

Stackup visualization

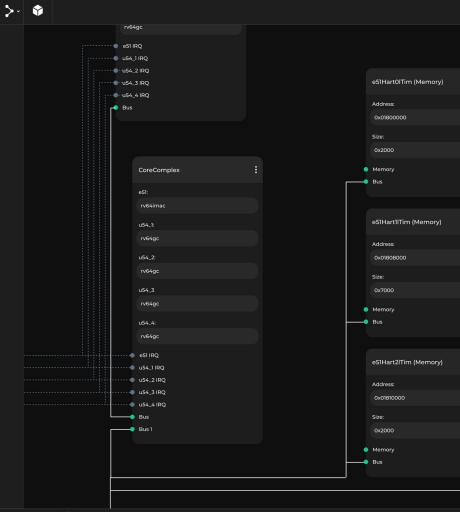
Growing open HW portfolio with photorealistic 3D renders

... but our flow can be used to visualize any board

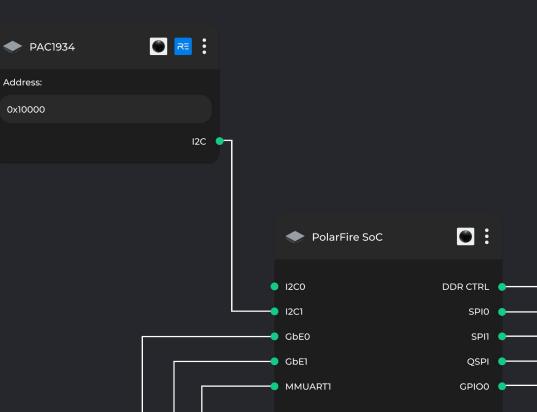


It's all part of the same landscape




Introducing the Hardware Designer

Unleash the freedom provided by RISC-V

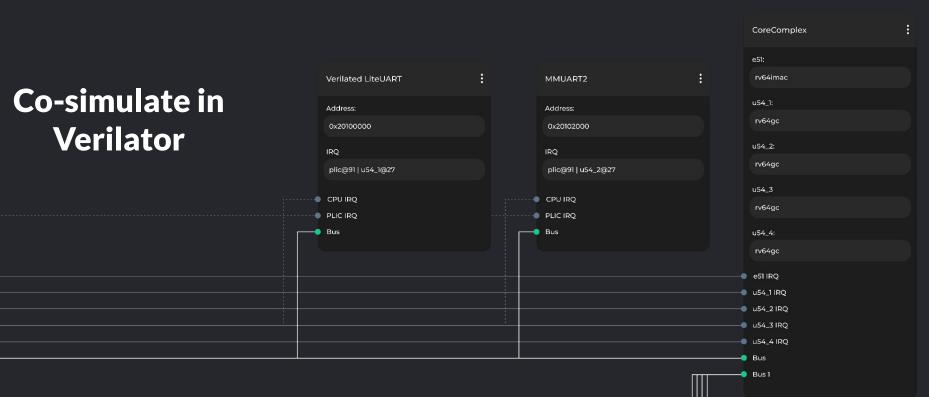


Build SoCs from IP blocks

Expand to entire boards

Look up components in Renodepedia and our Open Hardware Portal

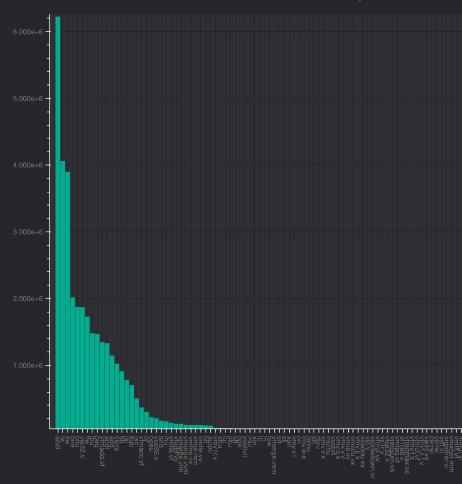
• ^	Ŷ				
	Nodes	browser			
	Q Se				
	> FPGA				
	> Conne	ctor			
	> IC				
		DDR4 x32 (8GB)			
		SD Card	9		
		QSPI Flash			
		DDR4 x64 (8GB)			
		PCIe Switch			
		Mux			
	•	LPDDR4 x32 (2GB)			
		SPI Flash	≈ 🌒		
	•	eMMC Flash	9		
	> Interfacing				


(*) antmicro

Generate Renode simulation files

Load specification Load graph file Save graph file Export graph to PNG Generate Renode files

Y

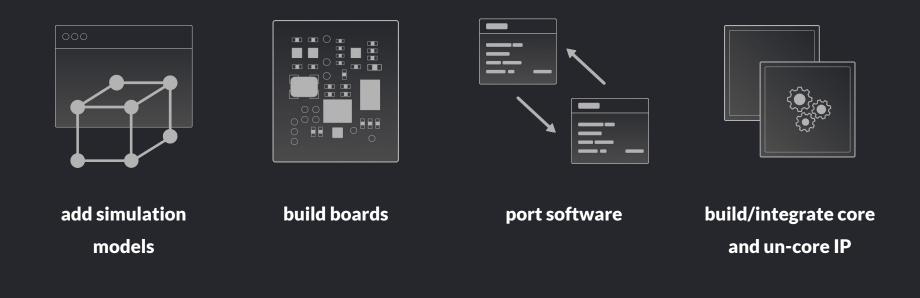


Co-development of ML, vector, custom instructions

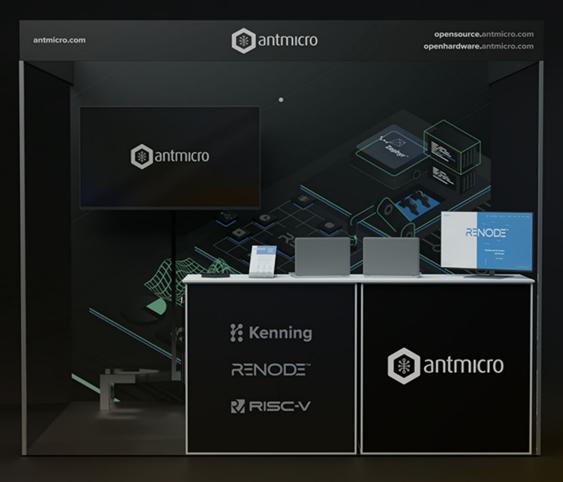
Gather metrics from your implementation

Verify your implementation with RISC-V DV

0x8000bfa8: 01010113 addi sp, sp, 16 0x8000bfac: 00008067 ret 0x8000c0b8: fff00793 li a5, -1 00f50e63 0x8000c0bc: beq a0, a5, 28 00a4dc63 bge s1, a0, 24 0x8000c0c0: 0x8000c0d8: 00847413 andi s0, s0, 8 0x8000c0dc: 30042473 csrrs s0, mstatus, s0 0x8000c0e0: 01c12083 lw ra, 28(sp) 0x8000c0e4: 01812403 lw s0, 24(sp) 0x8000c0e8: 01412483 lw s1, 20(sp) 0x8000c0ec: 02010113 addi sp, sp, 32 0x8000c0f0: 00008067 ret 0x8000cac4: de1f50ef jal -41504 0x800028a4: 00800793 li a5, 8 3007a7f3 0x800028a8: csrrs a5, mstatus, a5 10500073 wfi 0x800028ac: 0x80000010: fb010113 addi sp, sp, -80


Generate Zephyr firmware, U-Boot, Linux kernels

Calling CPU, SoC, SoM, board, SBC vendors, sensor and component manufacturers, IP providers



Calling end users, product development companies

RISC-V Summit Europe

Meet us at Booth 1

