RISC-V: An opportunity for Bosch Automotive Electronics product range

F. Bernard, AE/EIY, Jun 6th 2023

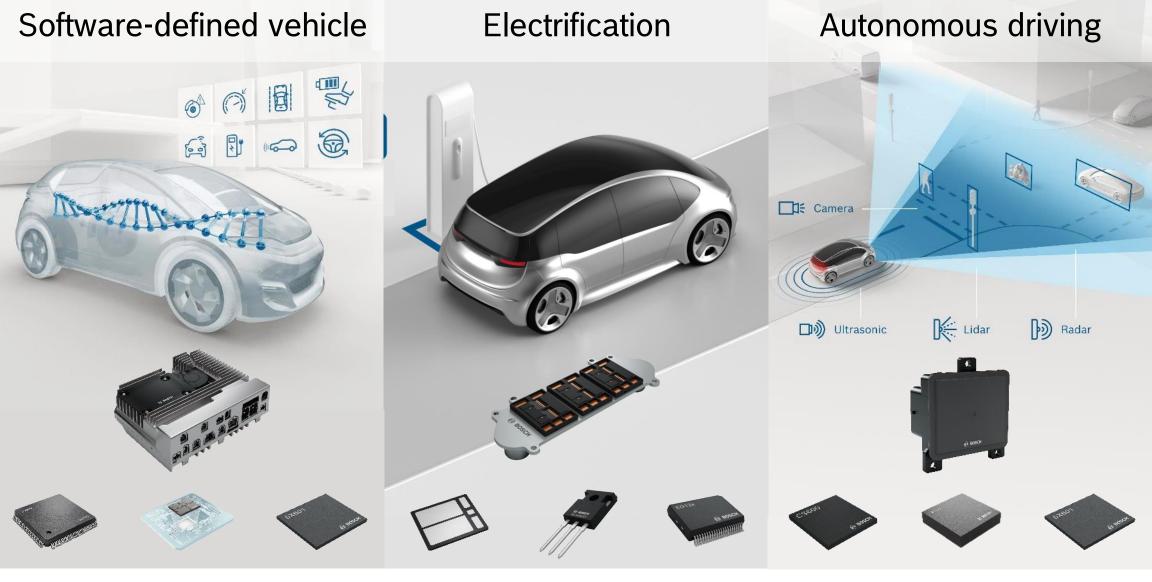
RISC-V – Bosch AE Agenda

Section 1

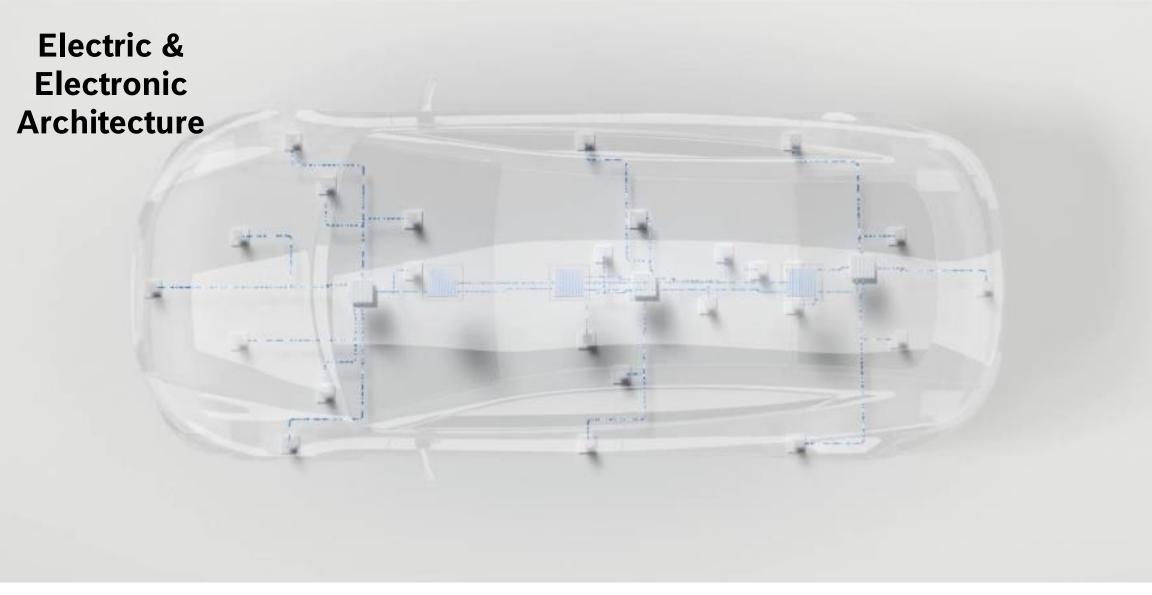
- Bosch Mobility Electronics (introducing Bosch as Tier-1 and Tier-2/Tier-3 supplier)
- Automotive product map

Section 2

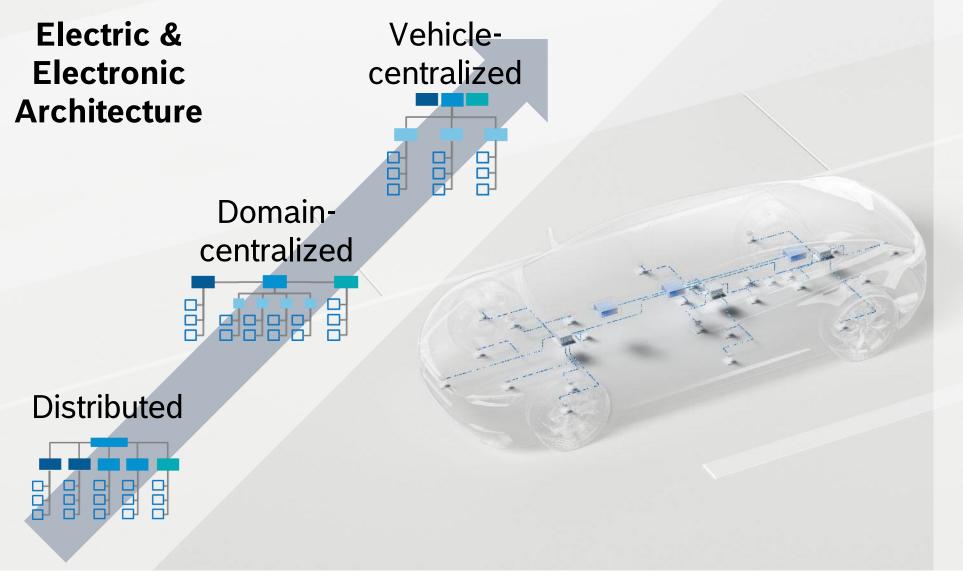
- Performance required and typical processing needs per module
- Focus on Automotive Electronics (Bosch Tier 2) needs, market perspective
- Range of cores required by Automotive Electronics needs


Section 3

- Expectations/Key points from the RISC-V introduction in Automotive Electronics products
- Focus key parameters (from ISA to PPA)
- HW eco system
- SW eco system
- Functional Safety & Security attributes


Section 4

Conclusion and perspectives



Zone

Integration of software and I/O parts from fixed-location ECU (e.g., window control,...)

Integration of dedicated hardware functionalities (e.g., body, climate,...)

are functionalities body, climate,...)

I/O connection of simple sensors and actuators (e.g., seat, window,...)

High-performance SW features that define vehicle-level functions (e.g., ADAS,...)

Sensors & actuators

I/O connection of high-data-rate sensors (e.g., camera streams, ...)

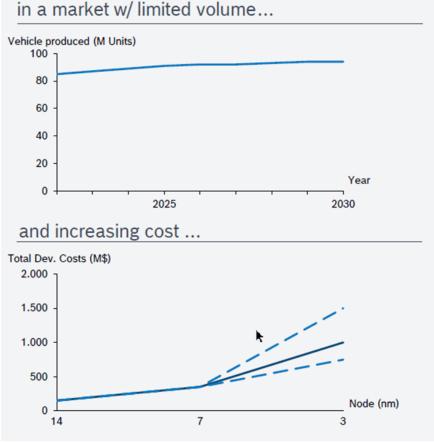
Vehicle computers

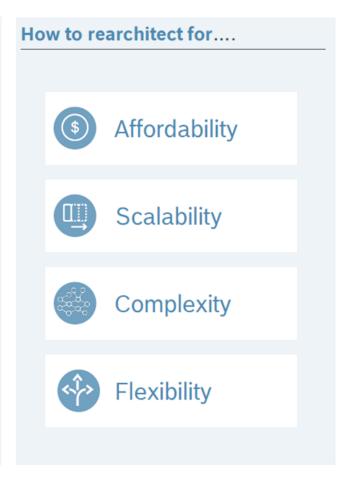
RISC-V @ Bosch

Demanding needs for Assistance and Automated drive

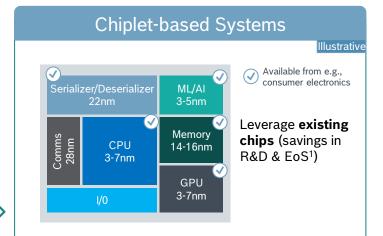
OEMs have need for HW compute...


Key trends in automotive industry drive the demand for **compute HW**, e.g.:



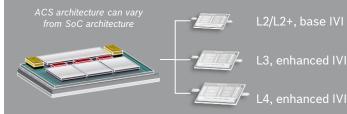

Autonomous Driving (Assist.)

Software-definedvehicle + x-Domain Integration



RISC-V @ Bosch **New Trend-Chiplet**

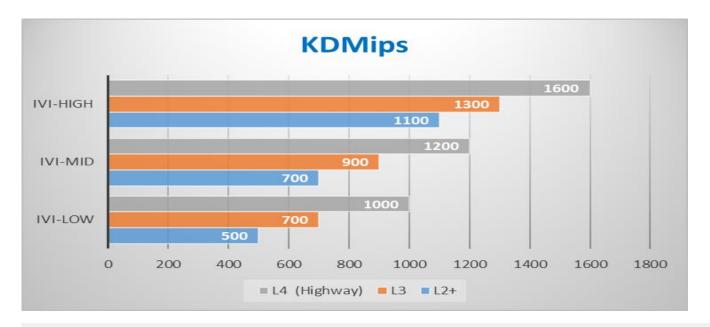
Monolithic System-on-Chip llustrative Requires development of entire new monolithic SoC 3-7nm


- Is current standard in SoC development
- >> Ensures high performance for use-cases
- High **development & fabrication cost**, esp. with larger die sizes and lower node sizes

- Allows for smaller individual die sizes and combination of varying node sizes
- >> Simplifies reuse of already existing chiplets in varying configs.
- Cost efficiency of packaging tech unclear

Chiplet technology already utilized in markets such as server gaming, but not yet in automotive

Automotive Chiplet System (ACS)



New ACS architecture to derive various configurations

- **Disintegration of value chain,** allowing for new entrants in compute
- **Enabling OEM involvement** in design choices & tailoring towards own reg's
- Easier upgradeability and re-usability of individual Chiplets within system

RISC-V @ Bosch

Combined ADAS/IVI performance needs

Take away

- 64b processor, ~10 DMIPS/MHz
- Large multi-core, cache-coherent architecture, heavy multi-thread capability
- 3-5GHz, CMOS technology <5 nm

RISC-V @ Bosch Automotive Electronics IP, Sensors, Gatewayd

Engine Management

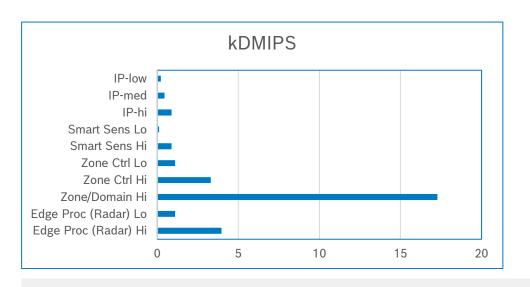
Brake Control

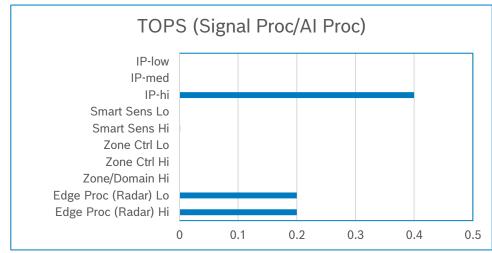
E-Drive Control

Airbag & Safety Restraints

In Vehicle Networks

ADAS Sensors RADAR, USS

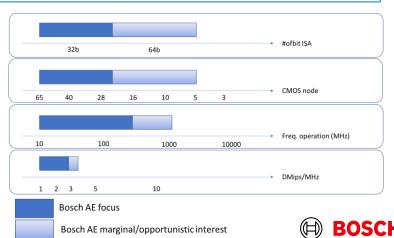




HW accelerators Computer Vision EDE, GTM

RISC-V @ Bosch Automotive Electronics Focus on IP, Edge and Gateway needs

32 bit variant


Excellent **real-time** capability, 2 to 3 DMIPS/MHz

Some SIMD capability, FPU optional

Extension to tightly attached coprocessors (+more loosely attached ones)

100 MHz-1GHz, 65..16nm, down to below 10nm for Zone/Domain controller

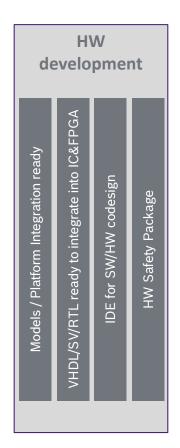
Mostly single core till 1kDMIPS, dual or quad core capability above

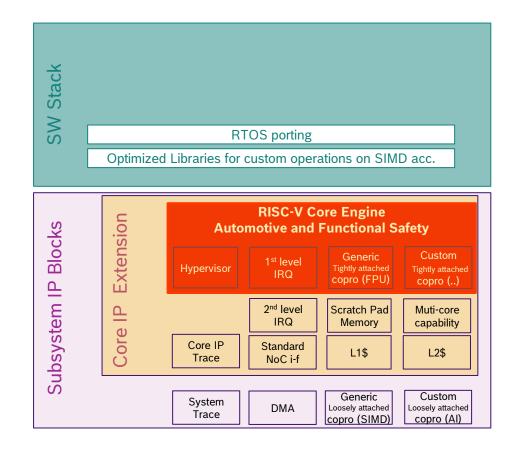
RISC-V @ Bosch Automotive Electronics Bosch Automotive Electronics : key points for Risc V

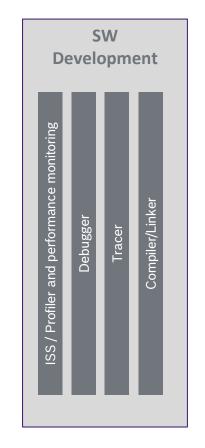
- Vendor independence
- Geographic independence (Control export rules)
- Reduced cost of ownership including options to work with some open-source IP
- Full range / scalability
- Opportunity to customize ISA to specific needs
- Extensibility to Data handling (SIMD operations)
- Interoperable IP and tools served by numerous companies, good dynamics in ecosystem

RISC-V @ Bosch Automotive Electronics Bosch involvement in RISC-V ecosystem

Bosch AE is involved in RISC-V ecosystem


in cooperative projects such as Scale4Edge (Ge),


- **EU-funded project Tristan**
- Special focus on RISC-V Use in functional safety relevant applications
- CVA-6 extension (FuSa, AI tightly attached coprocessor) with the support of OpenHW Group
- CVA-6 verification contribution in the OpenHW Group umbrella
- Modeling with EU partners
- Bosch is in discussion with several RISC-V suppliers matching automotive needs
 - At both Automotive Electronics level and at Tier-1 level
- Bosch Automotive Electronics is in assessment phase for the time being
 - Target: Decision about product introduction based upon RISC-V for Start of Production 2028+



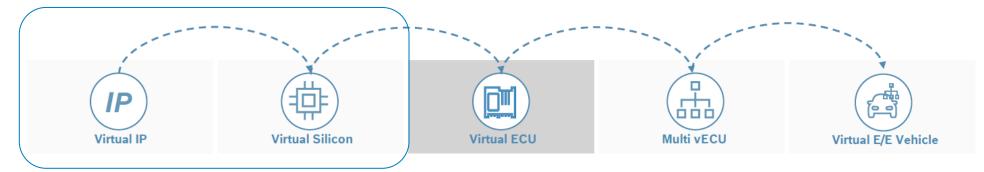
RISC-V Ecosystem

Bosch Automotive Electronics view

RISC-V @ Bosch Automotive Electronics

Key focus points

- ISA instructions (MAFDC capability)
 - Bit/Byte handling capability (L/S/ALU) (Zbb/Zbs)
 - Code Compression extension (Zc)
 - Superscalar capability (dual-issue primarily ALU/ALU and ALU/LS)
 - In-order execution, branch prediction
 - optimized control/config of operations (Zicsr), dynamic load of program (Zifencei), semaphore (atomic)
- Other capability
 - Hypervisor
 - FPU 32b/64b and 16b operations
 - SIMD 4b/8b/16b/32 single cycle MAC (4x8b typically) + DSP specifics ("0" overhead loop, circular addressing)
 - Extension to dedicated coprocessor via CV-X-IF, optionally native RISC-V ISA Extension
- Performance, Power, Area
 - Linked to pipeline length (2-8)
 - Low power design (clock gating, granularity in cache management, transaction mgt with Interconnect, WFI)


RISC-V @ Bosch Automotive Electronics HW eco system key points

- Automotive compliance (pay attention to memory cuts, scan coverage, don't use cells for hard macro)
- L1\$ (Write Through and Write Back configuration), 0 ws Scratch-Pad Memory
- Efficient IRQ management (128 lines at least, >8 priority level including NMI, vectored mode support, low latency handling i.e ~30 cycles, multi-core capability)
- Monitoring IP [PMP] supporting off and on-line performance measurement +32b counter of HW evts
- Trace and Debug (JTAG compliance, HW break point, step-by-step instruction, Test Access Port, I&D)
- Multi-core capability (inc. coherent systems, L2\$ (unified cache complying with AXI/ACE i-f)
- Advanced memory management (support of 16+ regions of variable size, cacheabilty attributes)
- Standard Interconnect i-f (AXI-4/AXI-5 compliance)
- DMA (memory to memory, memory to peripherals, safety and security attributes)
- IDE to perform combined HW/SW codesign for coprocessor tightly attached to core
 - Definition of requirements (DSL) to generate ISA extensions ensure portability of custom extensions, agree upon an API to integrate RISC-V cores in SoC context and assess KPIs from a customer SW / Workload

RISC-V @ Bosch Automotive Electronics SW eco system key points

- Performing Compiler (C/C++, Rust) 1)
- Optimized libraries (SIMD exploitation..)
- Model (integration-ready into platform creation Toolsuite, instruction accurate & cycle approximate)

- Debugger, Profiler, Tracing Toolsuite
- RTOS²⁾ exploiting HW facility, Hypervisor
- (1) see also safety related constraints for qualification according to ASILD ISO-26262
- (2) RTOS is primarily RTK for AutoSar but QNX is of relevance High Level OS can be seen as relevant extension for 64b variant though not a priority for Bosch Automotive Electronics now

RISC-V @ Bosch Automotive Electronics Functional safety attributes

- FuSA ISO 26262
 - Functional Safety is not just about HW technical measures to cope with transient and permanent faults
 - Functional Safety has much to do with **development process**.
 - IP shall be developed according to a mature and 'safe' development plan in order to avoid systematic faults
 - Functional Safety calls for a safety package which requires safety analysis in depth to derive key documentation meant for correct integration of IP into SoC
 - Now, Functional safety also requires dedicated HW facility to cope with transient and permanent/latent faults such as dual-core lock step, error protection on memory buffer as well as on physical path (address, data),etc..
 - Functional Safety is not about HW work products but also scopes SW work products (compiler/assembly)

RISC-V @ Bosch Automotive Electronics Security attributes

- Security ISO 21434
 - Primarily a security analysis support (TARA) at module and IC level that will call for a need for a security package (integration guideline at the least)
 - Tough in general **more a subsystem or an IC level issue** calling for dedicated HW IP, protected bus to convey sensitive data, anti-tampering mechanisms such as shield/analog sensors, ...),
 - Additional support at Core level can also be relevant such as Zbk, Zkn ISA extension or even some tightly attached crypto coprocessor (such as AES)

RISC-V @ Bosch Automotive Electronics

Conclusion and Perspectives

Our short term needs

ASIL-D capable IPs with all relevant goodies matching our full-range needs

ASIL-D approved and efficient C/C++ compilers

Eco-system is progressing on that matter with some vendors taking the request with full concern

Our next target

Get Flexible IA & Cycle Approximate models that can be 'easily' integrated in order to create virtual platform at SoC and ECU-level

Make sure that trace and debug ecosystem is getting mature

Get a competitive PPA for Bosch Automotive Electronics entire range

Our challenges

OpenHW Group: maturing ecosystem with lot of actors, expecting mature verification whilst working on FuSa RISC-V: What about an extension of scope to GPU?

THANK YOU FOR YOUR ATTENTION

