
Developing an
Automotive
Safety Island

June 23 1Imagination Technologies 2023

Vehicle Architecture Trends

June 23 2

Electrification ADAS / Autonomy Connectivity

Increased compute requirements

Increased software content

Safety remains paramount

Security becoming critical

Consolidation of compute resources

Drive for standardisation

Discrete

ECUs

Domain

Controllers

Zonal

Controllers

R
e
a
r-

le
ft

Z
o
n
e
 C

tr
l

R
e
a
r-

R
ig

h
t

Z
o
n
e
 C

tr
l

F
ro

n
t-

le
ft

Z
o
n
e
 C

tr
l

F
ro

n
t-

R
ig

h
t

Z
o
n
e
 C

tr
l

C
e
n
tr

a
l

C
o
m

p
u
te

Functionally Safe Systems

ASIL-D requirements increase cost through:

➢ Rigorous control over development process

➢ Additional documentation requirements

➢ Inclusion of redundancy mechanisms

➢ Exclusion of difficult to analyse technologies

➢ Reducing sharing of resources

June 23 3

Dual Core Lockstep

To detect errors in logic, a redundant copy of a core
processes the same inputs as the functional core
(usually with a delay of a few cycles). Outputs are
compared and any differences indicate a fault.

Provides excellent coverage, but is expensive and
does not offer fault correction.

ECC or Parity

Data (either in memory or in transit on busses) may
be protected by ECC (Error Correction Codes).

Provides fault correction as well as detection.
Requires extra memory and/or routing, and may add
delays to critical paths limiting frequency.

Typical hardware safety features used to
achieve ASIL-D

Safety Integrity Levels

Automotive systems are rated as 1 of 4 “Safety Integrity
Levels”

ASIL-A for the lowest level, through ASIL-D for the highest

ASIL-D Costs

Mixed Criticality ECU functionality

➢ Zonal controllers host a range of functionality in one ECU

➢ Some of these functions may require high safety integrity

➢ Much of the functionality may require a lower safety integrity level

➢ For example, one controller may implement

➢ Anti-lock braking, requiring ASIL-D

➢ Brake light control, requiring ASIL-B

June 23 4

Design everything to ASIL-D Separate SoCs for different

safety levels

Mix criticality on a single chip

Very expensive

Complex functionality can difficult to

implement to ASIL-D

Inefficient communication

Higher BoM

Lower reliability

High criticality functionality needs

isolation and Freedom From

Interference from rest of SoC

5June 23

Example Safety Island SoC

P
o
w

e
r

a
n
d
 c

lo
c
k

is
o
la

ti
o
n

Safety Island

ASIL-D

Rest of SoC

ASIL-B

RISC-V Real

Time CPU

Lockstep

redundant CPU

Deterministic Interconnect

Boot ROM /

Flash

Safety

Controller
SRAM

Flash
Security

Controller
Comms

Applications

processors

Graphics

processors

High performance Interconnect

Boot ROM SRAM

Flash

DRAM

Peripherals

DSP Accelerators

Crypto

engine

Comms

T
e

s
t
In

fr
s
tr

u
c
tu

re

FFI protected access

TCM Cache

ECC ECC

June 23 6

Freedom From Interference requires that a failure in the ‘Rest of SoC’ (ASIL-B) must not be able to
cause a failure in the Safety Island (ASIL-D)

• Timing and execution

• Execution of an ASIL-B function being blocked must not block an ASIL-D function executing

• Made easier as only ASIL-D functions run on the Safety Island

• Safety Island code must not block waiting on an action from ASIL-B software

• Memory

• Memory corrupted by faulty execution on the ASIL-B side must not affect Safety Island software

• Generally, use separate memories with no access to the Safety Island memory from Rest Of SoC

• Any shared buffers should be in a constrained area in the Safety Island side

• If accessibility from Rest of SoC is programmable, must be configured by Safety Island software

• Exchange of information

• Safety Island software must treat any data from the Rest-Of-SoC as unreliable (maybe in shared
buffer)

• Validate integrity, ensure corrupted data does not cause failure

The Safety Island

June 23 7

Characteristics

Physically Isolated (power and clock) from Rest of SoC (to provide protection from common mode
failures)

Keep as simple as possible – less components, easier to analyse, less opportunity for failures

Real time CPU (Typically TCMs and no MMU)

Functions

General ASIL-D workloads

Control reset and clocks for Rest of SoC

Monitor the rest of the SoC for safety failures

Provide resilient communication to other ECUs

Coordinate in-service BIST

Security monitoring

Summary

June 23 8

Industry trends driving move to more compute, and much more software

Architecture moving from separate ECUs, to Domain controllers, to Zonal
/Centralised controllers

Increased need to mix safety criticality on a single SoC

Best achieved using a high-safety Island

	Slide 1: Developing an Automotive Safety Island
	Slide 2: Vehicle Architecture Trends
	Slide 3: Functionally Safe Systems
	Slide 4: Mixed Criticality ECU functionality
	Slide 5: Example Safety Island SoC
	Slide 6
	Slide 7: The Safety Island
	Slide 8: Summary

