QO imagination

DEVELOP'NG
SAFETY ISL z b

JJJJJJ

Om| Imagination

Vehicle Architecture Trends

Electrification ADAS / Autonomy Connectivity

Front-left
Zone Ctrl
Zone Citrl

-
=
2
14
-
c
o
S
LL

Increased compute requirements
Increased software content

Safety remains paramount
Security becoming critical
Consolidation of compute resources
Drive for standardisation

Rear-left
Zone Ctrl

Discrete Domain Zonal

Controllers

ECUs Controllers

June 23

QO imagination

Functionally Safe Systems

Typical hardware safety features used to
achieve ASIL-D

Automotive systems are rated as 1 of 4 “Safety Integrity Dual Core Lockstep
Levels”

Safety Integrity Levels

To detect errors in logic, a redundant copy of a core
ASIL-A for the lowest level, through ASIL-D for the highest processes the same inputs as the functional core

(usually with a delay of a few cycles). Outputs are

compared and any differences indicate a fault.

ASIL-D Costs Provides excellent coverage, but is expensive and
does not offer fault correction.
ASIL-D requirements increase cost through: ECC or Parity

» Rigorous control over development process
» Additional documentation requirements

» Inclusion of redundancy mechanisms _ _ _

. oo : Provides fault correction as well as detection.
» Exclusion of difficult to analyse technologies Requires extra memory and/or routing, and may add
» Reducing sharing of resources delays to critical paths limiting frequency.

Data (either in memory or in transit on busses) may
be protected by ECC (Error Correction Codes).

June 23 3

Om| Imagination

Mixed Criticality ECU functionality

» Zonal controllers host a range of functionality in one ECU
» Some of these functions may require high safety integrity
» Much of the functionality may require a lower safety integrity level

» For example, one controller may implement
» Anti-lock braking, requiring ASIL-D
» Brake light control, requiring ASIL-B

Design everything to ASIL-D

Very expensive Inefficient communication High criticality functionality needs
Complex functionality can difficult to | Higher BoM isolation and Freedom From
implement to ASIL-D Lower reliability Interference from rest of SoC

June 23 4

Om| Imagination

Example Safety Island SoC

X
O
o
O c
- .©
=
. O
o .9
@)
(al

FFl protected ac

June 23 5

Om| Imagination

Freedom From Interference requires that a failure in the ‘Rest of SoC’ (ASIL-B) must not be able to

cause a failure in the Safety Island (ASIL-D)

* Timing and execution

« Execution of an ASIL-B function being blocked must not block an ASIL-D function executing

« Made easier as only ASIL-D functions run on the Safety Island

« Safety Island code must not block waiting on an action from ASIL-B software
* Memory

« Memory corrupted by faulty execution on the ASIL-B side must not affect Safety Island software

» Generally, use separate memories with no access to the Safety Island memory from Rest Of SoC

« Any shared buffers should be in a constrained area in the Safety Island side

« If accessibility from Rest of SoC is programmable, must be configured by Safety Island software

 Exchange of information

« Safety Island software must treat any data from the Rest-Of-SoC as unreliable (maybe in shared
buffer)

« Validate integrity, ensure corrupted data does not cause failure

June 23 6

Om| Imagination

The Safety Island

Physically Isolated (power and clock) from Rest of SoC (to provide protection from common mode
failures)

Characteristics Keep as simple as possible — less components, easier to analyse, less opportunity for failures

Real time CPU (Typically TCMs and no MMU)

General ASIL-D workloads
Control reset and clocks for Rest of SoC
_ Monitor the rest of the SoC for safety failures
Functions _ » L
Provide resilient communication to other ECUs
Coordinate in-service BIST

Security monitoring

June 23 7

QO imagination

Summary

@ Industry trends driving move to more compute, and much more software

- Architecture moving from separate ECUs, to Domain controllers, to Zonal
-+« /Centralised controllers

Increased need to mix safety criticality on a single SoC

Best achieved using a high-safety Island

s <

June 23 8

	Slide 1: Developing an Automotive Safety Island
	Slide 2: Vehicle Architecture Trends
	Slide 3: Functionally Safe Systems
	Slide 4: Mixed Criticality ECU functionality
	Slide 5: Example Safety Island SoC
	Slide 6
	Slide 7: The Safety Island
	Slide 8: Summary

