
Android on RISC-V
Progress & Updates

Lars Bergstrom, PhD
Director of Engineering, Android





Android is an open source 

operating system

AOSP is the corresponding 

open source project led by 
Google

Documentation and source code needed to 
build, customize, port to new hardware, and 
meet compatibility requirements are 
available at:

https://source.android.com
https://android.googlesource.com

https://source.android.com
https://android.googlesource.com


Status of Android on 
RISC-V



Still no product announcements...

But we’re far more 
ready for your
products!



Key areas of progress in 2023

Thanks to the entire ecosystem!

Android Runtime (ART) available

Cuttlefish emulator available

Prebuilt tools - compilers & system root 
libraries available

Initial support landing soon for extensions 
beyond RV64GC to optimize the platform
● Vector
● Bit-manipulation extension 

optimizations (Zba/b/s)

Profiling works (again, prebuilts coming 
soon)

Contributions and work with ecosystem 

partners and upstream maintainers on

● LLVM

● Kernel

● QEMU

● Graphics libraries

● Crypto libraries

● Codecs

Work to ensure the ABI is forwards-
compatible with new potential atomics 
additions

Support for many RISC-V members on the 
Android SIG looking into standing up 
AOSP on a variety of emulation and 
physical devices

AOSP Open Source Projects Upstream at RISC-V International



Emulation - Getting Started with Cuttlefish for RISC-V

https://github.com/google/android-riscv64

$ lunch aosp_cf_riscv64_phone-userdebug
$ m -j
$ launch_cvd -cpus=8 -memory_mb=8192

Then, use vncviewer to connect

https://github.com/google/android-riscv64


Emulation - Cuttlefish for RISC-V Roadmap

Today

● Cuttlefish prebuilt bootloader and kernels added to AOSP

● Lunch targets for phone, slim & minidroid added to AOSP

● Builds available from ci.android.com

● Phone target can reach boot complete in 8 minutes with QEMU 

TCG on a fast PC

Soon

● Scalable testing with accelerated GPU + QEMU on server 

platforms

● Reduced boot time and reduced flakiness

Later

● Scalable testing with host-side SwiftShader and QEMU on GCP 

● Hardware virtualization, crosvm support

https://ci.android.com/builds/branches/aosp-master/grid?


As on other platforms, either SIMD or vector 

optimizations are required for efficient string 

and memory copy, zeroing and permutation 

options

● memchr, memcmp, memcpy...

● strcat, strcmp, strcpy,...

Optimizations for libm are also available

● fabs, ceil, floor, fmax/fmin, round, etc.

Platform - Bionic optimization



Platform - Toolchain & Compilation

We're mostly focused on ABI changes at the moment:

● Emulated TLS (https://reviews.llvm.org/D147834)

● TLSDESC (change coming soon)

● Future-compatible atomics 

(https://reviews.llvm.org/D149486)

Autovectorization is a top priority

● Required for many libraries such as Skia and 

benchmark suites such as Geekbench

● Increased complexity with multiple potential 

implementations and many different cross-ISA 

considerations

https://reviews.llvm.org/D147834
https://reviews.llvm.org/D149486


Updated image 

processing libraries!

But, work remains 

around helping with 

upstream CI/testing 

especially for 

important 

optimizations.

Libraries - libpng



Dart: fast apps on any platform

Dart, with Flutter, powers more than 1M apps 
in Google Play, e.g.:

● Alibaba, BMW, ByteDance, eBay, Google, 
Tencent, …

Languages - Dart on RISC-V

Dart is

● Memory-safe, garbage-collected

● JIT for dev, AOT for prod: ARM, x86

● Experimental RISC-V on android/riscv64 



The Android ABI for 
RISC-V



What is Android Compatibility?

Establish an open platform for developers to build 
innovative applications

Provide a consistent application and hardware environment to 

application developers.

Enable a consistent application experience for consumers.

Enable device manufacturers to differentiate while being compatible.

Minimize costs and overhead associated with compatibility.

Key point: the Android Open Source Project is free to use 
and build products and even ecosystems without being 
“Android-compatible”!

https://drive.google.com/open?id=13tGY5YaF39xPluf4extImgvJ6ntmwUkB


CDD - Compatibility Definition Document

● Ensures a compatible API surface for application developers

CTS - Compatibility Test Suite

● Validate Android compatibility requirements (CDD)

○ CTS: the primary, automated test suite

○ CTS Verifier: for manual tests which cannot be automated 

(minimize wherever possible) 

● Open sourced; develop and release per API level

● Essential tools Google uses to approve partner device launch

● Must pass this to be considered “Android-compatible”

Ensuring Application Compatibility



Additional test suites

● Required for Automotive partners to verify compliance.

● Security scans on preloaded system apps and system image.

● Image Test Suite

ATS

BTS

ITS

● Mainline test suite.

● Security test suite.

MTS

STS

● Required for Android TV partners.

● Required for Wearable partners.

TVTS

WTS

● Google Mobile Services & look / feel validation.GTS

● Required for hardware / chipset validation.VTS



Android Profiles

Supported ABI will be added to the CDD list per top-right (“riscv64”, with no 32-

bit equivalent)

Will be linked to the descriptive text in the NDK Supported ABIs

● All “supported instruction sets” will be a combination of

○ A RISC-V profile (probably RVA22)

○ Ratified extensions (probably vector + vector crypto)

○ Intentional omissions: SIMD, Scalar Crypto

Will require Android-compatible devices to be conforming hardware

● Must correctly implement the RISC-V ISA

● Must not misuse elements of the encoding space reserved for future 

extensions

Platforms (but not applications!) can take advantage of RISC-V features in the 

reserved vendor space



Looking to the future



RISC-V Android ABI Progress and Wishlist

See our current progress here: https://github.com/google/android-riscv64

Known issues here: https://github.com/google/android-riscv64/issues

Join the Android SIG mailing list and come to the monthly meetings for more: https://lists.riscv.org/g/sig-android

What’s next after “rva22 + vector + vector crypto”?

First: need to make sure to land vector crypto!

● Still haven't voted on ratification at time of writing (https://github.com/riscv/riscv-crypto/releases)

Very excited for platform support for the following extensions, but unclear if it’s required for Android applications as well...

● Zjid instruction/data consistency for JIT

● Zisslpcfi for security

● Zjpm pointer masking for hwasan

● Hans Boehm's proposed new atomics

● bfloat16 vector support

https://github.com/google/android-riscv64
https://github.com/google/android-riscv64/issues
https://lists.riscv.org/g/sig-android
https://github.com/riscv/riscv-crypto/releases
https://lists.riscv.org/g/tech-unprivileged/message/382


The road ahead for AOSP and RISC-V

NDK ABI finalized & canary builds 
available on Android’s public CI shortly 
thereafter: 
https://ci.android.com/builds/branches/a
osp-master-ndk/grid

RISC-V on x86-64 & ARM64 available for 
easier testing of riscv64 Android 
applications on a host machine

Continuing to build out features & performance

Virtual devices with accelerated graphics

Android Runtime (ART) optimizations for 
both the fast interpreter and precompiled 
code

Optimizations landing for QEMU, kernel, 
and all in-tree libraries (including use of 
bitmask & vector operations)

Emulators available publicly, with full 
feature set to test applications for various 
device formfactors

Released NDK contains RISC-V support

Q3 2023 Q4 2023 2024

https://ci.android.com/builds/branches/aosp-master-ndk/grid


Upstream at RISC-V International

Security is a key area where we are looking to collaborate more

● How do we help secure & isolate the tens of components on the SoC 
from each other and other workloads?

● Memory safety issues and side channels heavily affect code, 
especially native - how can we isolate it?

Several technologies we are very interested in

● TEE
○ How do we protect the execution of privacy and security-

sensitive operations?
● WorldGuard

○ Can we isolate some of the hardware components from each 
other more rigorously?

● CHERI
○ Software compartmentalization via processes is one of the 

highest memory and latency costs on Android!
○ Are there hardware mechanisms for providing better spatial 

isolation of memory?

Collaborating on innovation

https://drive.google.com/open?id=13tGY5YaF39xPluf4extImgvJ6ntmwUkB


Goal: Accelerate open source SW for RISC-V architecture

How: Align on highest priorities & avoid (accidental) duplication of work



Focus Areas

Coordination and collaboration among the RISE members is across an 
array of software areas to deliver high quality and high performance 
implementations for RISC-V software. 

Compilers & Toolchains LLVM, GCC

System Libraries Glibc, OpenSSL, OpenBLAS, LAPACK, OneDAL, Jemalloc 

Kernel & Virtualization Linux, Android

Language Runtimes Python, OpenJDK/Java, V8

Linux Distro Integration Ubuntu, Debian, RHEL, Fedora, Alpine

Debug & Profiling Tools Performance profiles, DynamoRIO, Valgrind

Simulator/Emulators QEMU, SPIKE

System Software UEFI, ACPI



Working Model

RISE is a tool to prioritize and bring more resources to help address gaps

Company A Gap List

Company B Gap List

Company Z Gap List

…

Deduplicate

+

Prioritize

Compiler & Toolchain Action List

System Libraries Action List

System Software Action List

…

For each Action, complete work in responsible upstream project (e.g., LLVM)



Examples of RISE Efforts

QEMU for helping test features & prove out ahead of hardware 

support

● AIA support 

● AIA support enhancements - IRQ filtering 

● Vector Cryptography support 

● WorldGuard support 

Simulator/
Emulator

● A.7 compatible atomics mappingsCompilers & 
Tool Chain



Join RISE

RISE Membership requires 
Linux Foundation Europe membership & RISC-V International 

membership. 

We are excited for your team to join this journey!
riseproject.dev

RISE is focused on positive and transparent collaborations with upstream 
projects to deliver commercial-ready software for various use cases



Learn more & contribute

Visit 
https://source.android.com/d

ocs/setup/contribute

Participate in the Android SIG 
here at RISC-V International
sig-android@lists.riscv.org

https://lists.riscv.org/g/sig-
android

Ensure the software 
ecosystem is prepared for the 
products you are bringing to 

market

https://riseproject.dev/

Source Contributions RISC-V Collaborations Consider Joining RISE

Many ways to participate in Android on RISC-V!

https://source.android.com/docs/setup/contribute
mailto:sig-android@lists.riscv.org
https://lists.riscv.org/g/sig-android
https://riseproject.dev/

