

RISC-V in China: Embracing the Era of Open-Source Chip

Yungang Bao BOSC/ICT,CAS June 7, 2023

RISC-V Summit Europe 2023, 5-9 June 2023, Barcelona, Spain

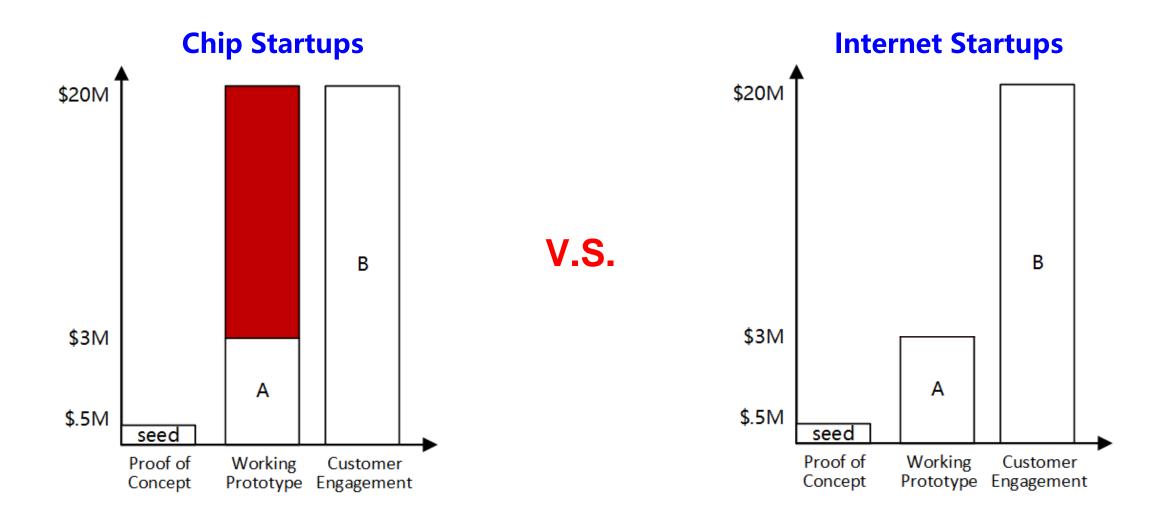
Outline

- Part I: Open-Source Chip Ecosystem (OSCE)
- Part II: RISC-V in China
- Part III: Progress in Building OSCE

Part I

Open-Source Chip Ecosystem (OSCE)

Three Dark Clouds Over the Chip Design Area


There are three dark clouds

- I. Moore's Law is ending
- II. Fragmentation in IoT is coming
- III. Global supply chain crisis is appearing

• We need innovation to counteract the dark clouds

- Leverage HW-SW co-design & domain-specific architecture (DSA)
- Develop agile chip design methodology
- Build an open & shared ecosystem

High Cost of Innovation for Chip Design

Serge Leef, DARPA, Automatic Implementation of Secure Silicon, SIGARCH Visioning Workshop, 2019

Impact of Open-Source Software Ecosystem (OSSE)

OSSE lowers the cost of innovation

- A small group (3-5 engineers) can build a mobile App prototype in 3-5 months
- There were 8.9 million mobile Apps by 2020

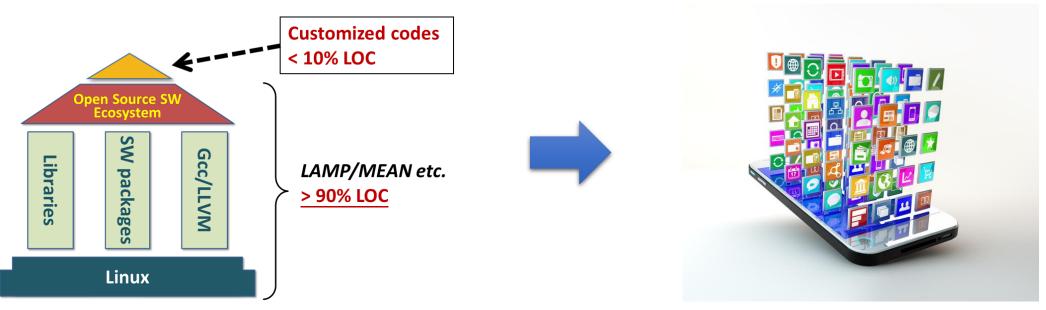
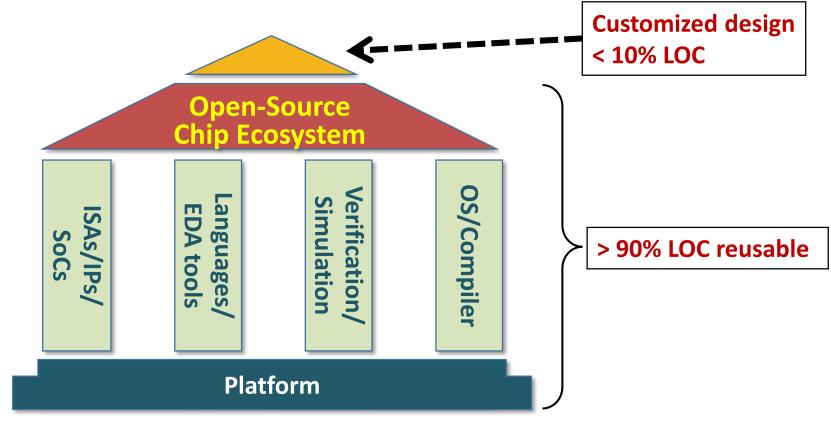
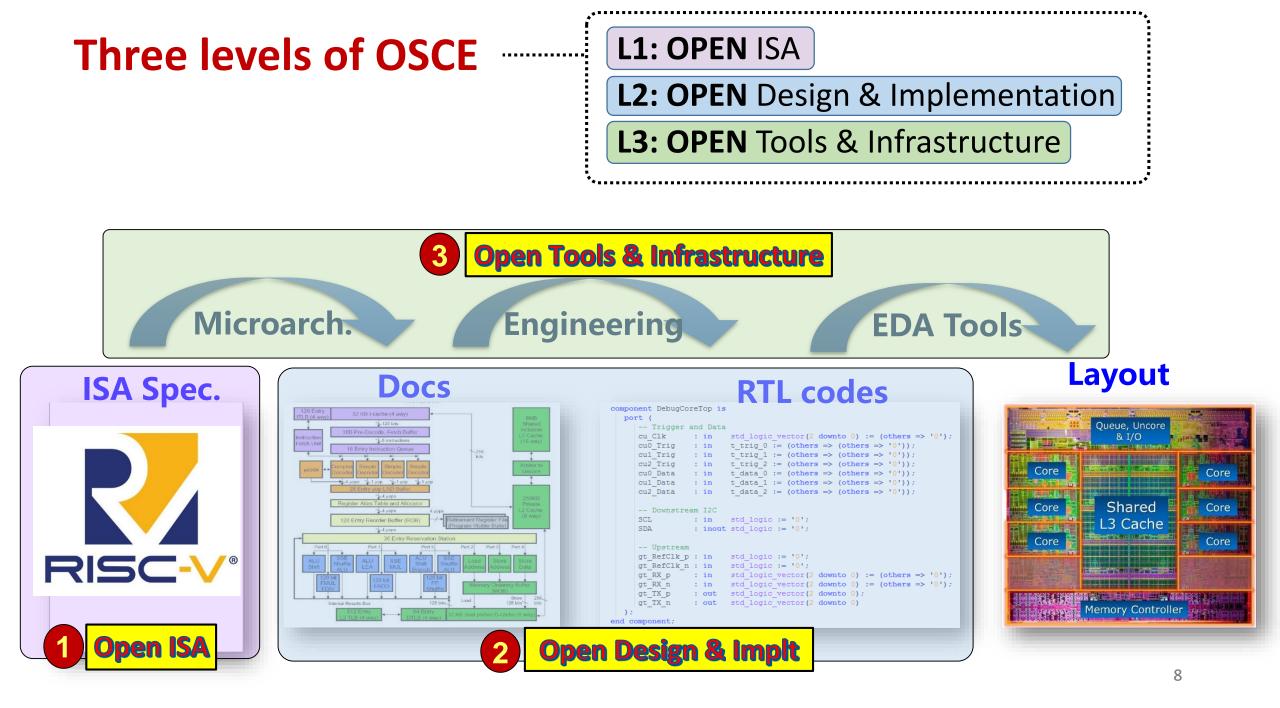
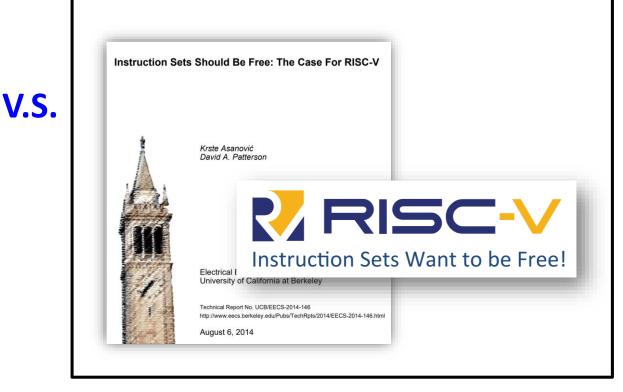




Image Source: <u>https://blogginbryan.wordpress.com/2020/02/11/7-</u> features-of-highly-successful-mobile-apps/

Open-Source Chip Ecosystem (OSCE)

- Lower the barrier of chip development
 - Save time-to-market and the cost of IPs, EDA tools and engineers

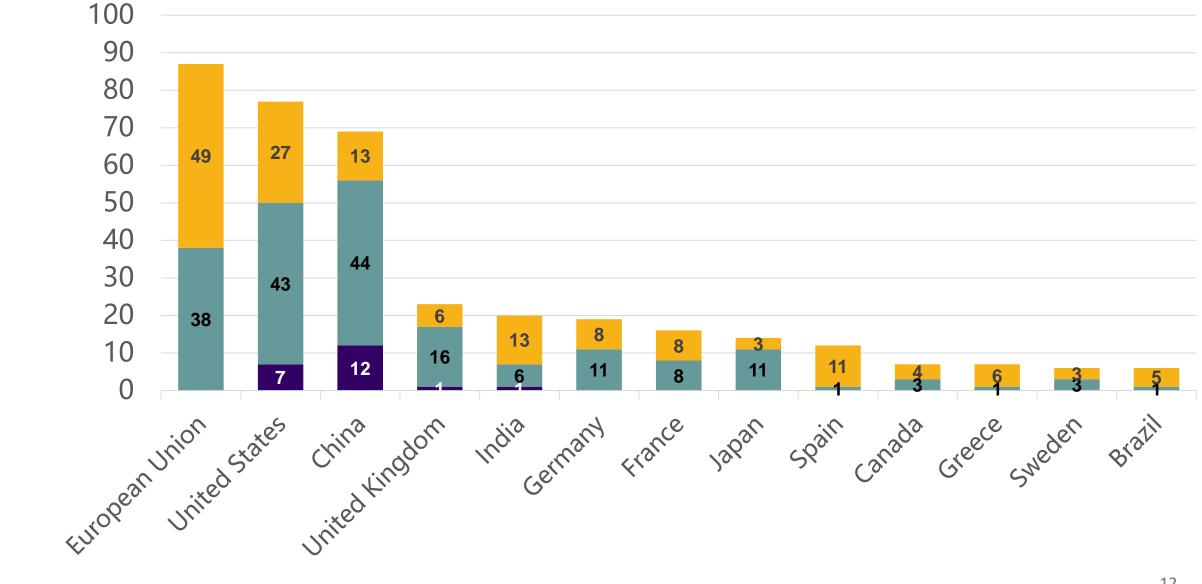


Lessons from an unborn "national ISA"

- Various ISAs (Alpha, MIPS, PowerPC, SPARC, X86 etc.) were adopted in China around 2010
- In 2012, MIIT proposed to merge these ISAs into a unified ISA
- Hard to reach a consensus:
 - Choose an existing ISA or design a new ISA?
 - Which ISA to be chosen?
 - Who own the unified ISA?

RISC-V's answer:

"ISAs should be free!"


Part II

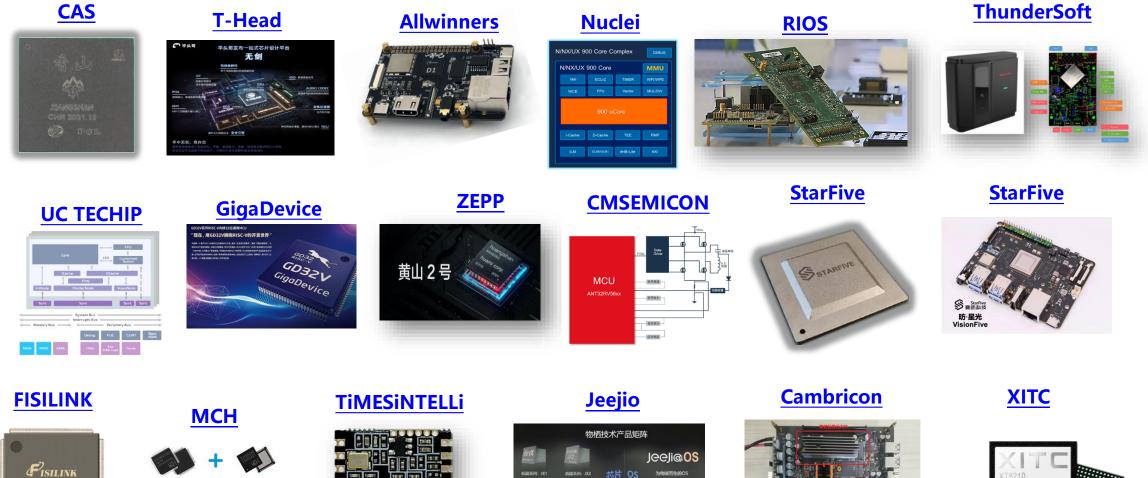
RISC-V in China

Timeline of RISC-V in China (partial)

- 2015, Chinese version position paper was published on CCCF
- 2015, organizations became the founding members of RISC-V Foundation
- 2016, scholars present research work at the 4th RISC-V Workshop
- 2017, the 6th RISC-V Workshop was held in Shanghai
- 2018, CRVA and CRVIC were founded
- 2018, Alibaba/T-Head (BoD) and many RISC-V startups were founded
- 2019, CAS launched a project to promote RISC-V in China
- 2019, RIOS Lab was established (BoD)
- 2020, the 1st "One Student One Chip" Initiative was announced
- 2021, the 1st RISC-V Summit China was held
- 2021, Allwinner D1, XiangShan v1 and other ten RISC-V chips released
- 2021, BOSC (BoD) was founded
- 2022, more and more companies chose RISC-V, such as Tencent
- 2022, eleven RISC-V chips released
- 2023, Sophon announced 64-core RISC-V processor SG2042

Members of RISC-V International

Strategic Members


Community Organization Members

12

RISC-V Startups in China

Company	Round of Financing	Total number of financing	Total financing amount (Million \$)
Company-1	С	4	916.2
Company-2	A+	Many times	140.8
Company-3	D	6	34.5
Company-4	B+	3	27.9
Company-5	А	5	20.0
Company-6	A	1	14.1
Company-7	PreA+	3	14.1
Company-8	B+	2	7.0
Company-9	Angel Round	1	2.8
Company-10	Pre-A	1	2.8
Others	-	—	Undisclosed
			> 1180

RISC-V CPU IPs are widely adopted

RISC-V通用工业级MCU RISC-V低功耗益牙MCU

RISC-V通用工业级无线型MCU 赤菟V208

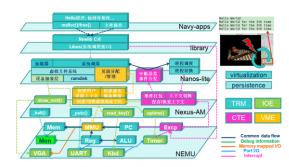
High performance RISC-V Chips (SOPHGO)

- 64 RISC-V cores (T-Head XuanTie C920) running at up to 2GHz
- Buy motherboard suites from Taobao (1000-1400 USD)
- SOPHGO donated 50 motherboards to RVI

Efforts in RISC-V Software Ecosystem

Compiler & Studio

HPC Platform


Compiler IDE

卡姆派乐 RISCV IDE
国内首款RISEV集成开发环境,型于图形化界面,一键式支装,主 要特点:
◇ 编译器支持代码长度优化:二进制代码长度比公版优化10-30%;
◇ 启动速度快、功能强大、界面简洁清晰;
◇ 集成SPIKE模拟器;
◇提供中英文两个版本;
◇功能可定制:可以根据用户体系结构的需求,提供编译器、调试器 等定制服务;
◇ 支持WINDDWS和LINUX操作系统。

OS for RISC-V

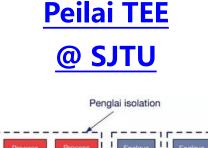
Tasks	89 total.	11	une.	ina.	88 5	leeping	. 0	tonned	. 0 zo	shie	
Mem		total		1437	12K u	sed.	72580	free.		12 buffers	
Swap:		total			0 u	sed.		free.		68 cached	
100%cc	u 3luser	0%	ice	31	svs .	95%idle	0%14	W 0%	iro 0%	sirg Olhost	
PID	USER	PR	NI	VIRT	RES	SHR S	INCPUT	MEN	TIME+	ARGS	
	root	20				1.8M R		0.2	0:04.65		
	system				36M	29M S	1.3	3.6		foundation	
	system				138	11M S	1.0	1.2		distributeddata	
	Logd					1.7M S	0.6	0.5	0:02.92		
107						872K S	0,6	0.1	0:00.73		
108	system					6.1M S	0.3	0.7		accountegr	
	system					4.4M S	0.0	0.5	0:00.12	audio_policy	
						2.0M S	0.0	0.2	0:00.03		
	system			23M		12M S	0.0	1.4		time_service	
219	system					11M S	0.0	1.3	0:00.63	telephony	
209						4.5M S	0.0		0:00.13	medialibrary_se	
	system	20 20	0		14M	4.9M S 12M S	0.0	0.5		media_service	
	cameraserve		ŏ			4.581 5	0.0	0.5	0:00.76	inputmethod_ser camera service	
	root	20	ă			6.8M S	0.0	0.7		vifi manager se	
	system	20	ŏ			15M 5	0.0	1.7	0:00.23	softbus server	
170	system	20	ŏ			4.5M S	0.0	0.5		pulseaudio	
172	system	20		100	5	4.6M S	0.0	0.5		huks service	
	system	20				5.2M S	0.0	0.6	0:00.15		
143	root	20				3.5H S	0.0	0.4		sample host hdf devhos	t 0 sample host
142	reet	20				3.58 5	0.0	0.4		usbfnMaster host evhost	
141	rest	20		8.8M	4.38	3.5M S	0.0	0.4	0:00.11	power host 7hdf devhost	t 2 power host
	reat	20		8.6M	4.38	3.6M S	0.0	0.4	0:00.12	wifi host n/hdf devhost	t 3 wifi host
	root	20		8.84	4.3M	3.5M S	0.0	0.4		wifi_c_host hdf_devhost	
	rost	20				3.5M S	0.0	0.4			t S audio_hdi_server_host
	root					3.6M S	0.0	0.4		camera_host hdf_devhost	
134						3.5M S	0.0	0.4		input_user_host devhost	
133						3.6M S	0.0	0.4	0:00.12	codec_host /hdf_devhost	t 8 codec_host
						3.6M S				riladapter_host devhost	t 9 riladapter_host
						3.5M S	0.0	0.4		hdf_devngr	
	system					1.8M S	0.0			faultloggerd	
120	system					7.1M \$	0.0		0:00.27	distributedsche	
119	root			3.14	1.24	872K S	0,0		0:00.25	udevd	

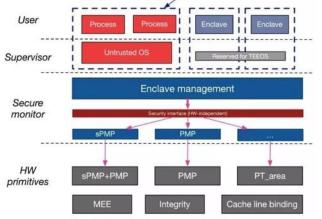
Simulator

....

Contributions from China to the RISC-V Ecosystem

- AOSP RISC-V (upstreaming): main contributors (Alibaba T-Head, PLCT Lab@ISCAS, ESWIN, ...)
- **OpenJDK RISC-V** (upstreamed): main contributors & port maintainers (Huawei, Aliababa, PLCT Lab@ISCAS, ...)
- V8 RISC-V (upstreamed): main contributors & port maintainers (PLCT Lab@ISCAS), FutureWei, ...)
- Firefox Spidermonkey RISC-V backend (upstreamed): key contributors & port maintainers (PLCT Lab@ISCAS)
- GNU Toolchain, Clang/LLVM, MLIR, QEMU, Spike, Gem5: active contributors (RiVAI, Alibaba, PLCT Lab@ISCAS, Huawei, WindRiver, Tsinghua, ...)
- **Chisel:** active contributors & maintainers (PLCT Lab@ISCAS)
- **OpenCV RISC-V Vector Optimization**: key contributors (PLCT Lab@ISCAS)
- **OpenBLAS RISC-V Arch**: key contributors & maintainers (PerfXLab, ...)
- **Box64**: key contributors (PLCT Lab@ISCAS)
- LualIT: contributors (PLCT Lab@ISCAS)

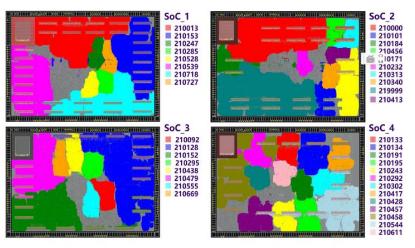

•


.....

- **Debian** (RISC-V port): many active contributors (PLCT Lab@ISCAS, ...)
- Fedora (RISC-V port): many active contributors (RedHat, PLCT Lab@ISCAS, ...)
- Arch Linux (RISC-V port): main contributors & maintainers (PLCT Lab@ISCAS, ...)
- **Gentoo Linux** (RISC-V port): main contributors & core developers (PLCT Lab@ISCAS, ...)
- openEuler (RISC-V): key contributors & maintainers (PLCT Lab@ISCAS, ...)

Research & Education

- MOST and NSFC are inviting proposals for RISC-V related research
- More and more universities use RISC-V for teaching



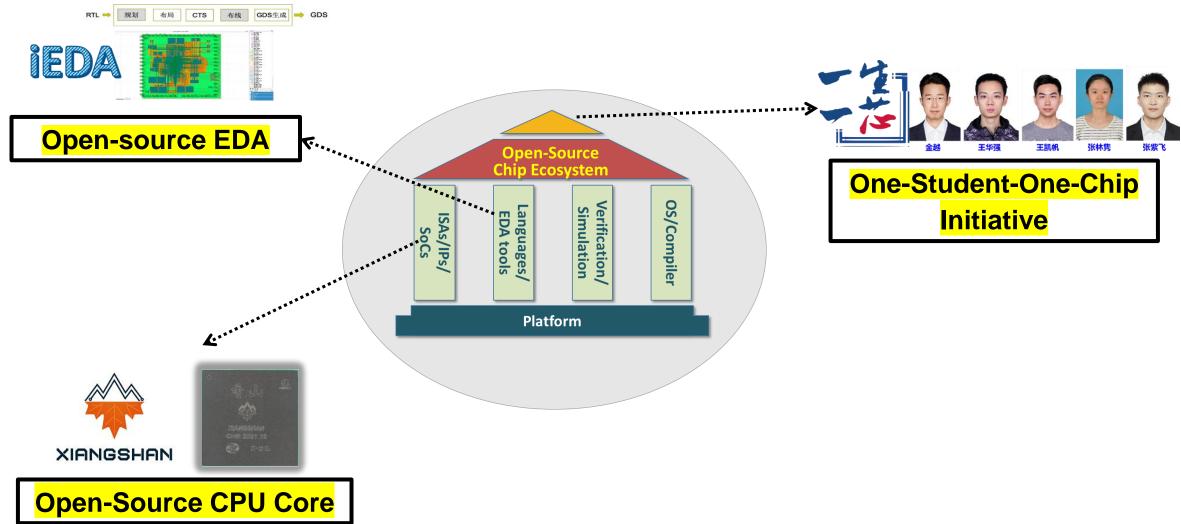
Textbook @ NJU

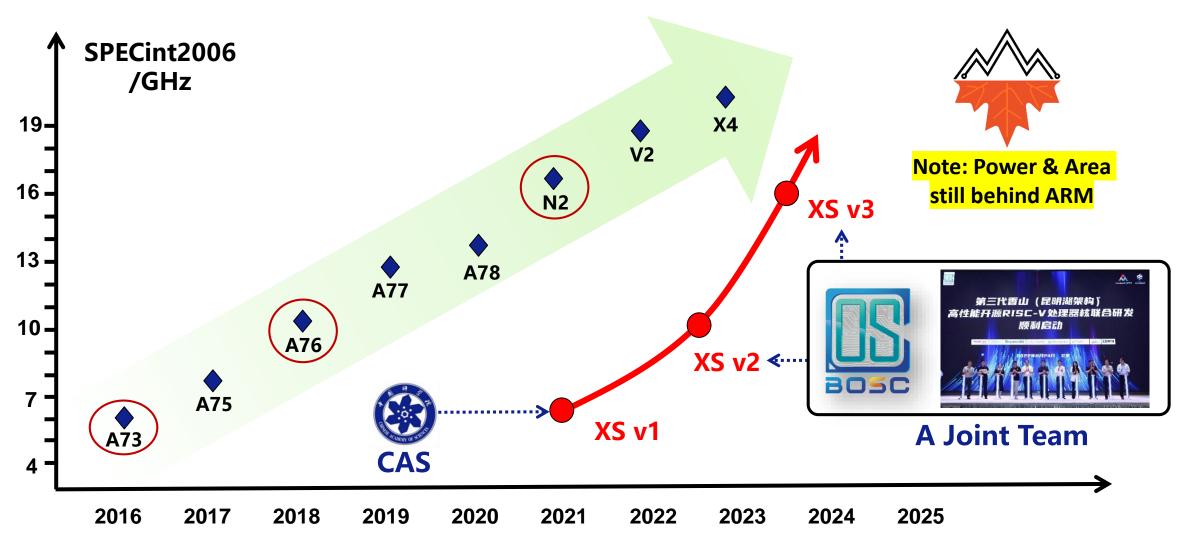
One-Student-One-Chip @UCAS

Part III

Progress in Building OSCE

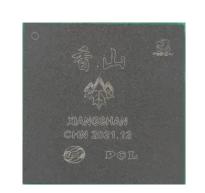
The "3-Step Plan" towards OSCE (by 2030)


- When China RISC-V Alliance (CRVA) was founded in 2018, we also put forward the "3-Step Plan":
- <u>Step 1</u>: Provide silicon-proven opensource RISC-V IPs & SoCs (3-5 years)
- <u>Step 2</u>: Develop open-source SoCs by open-source EDA tools (5-7 years)
- <u>Step 3</u>: Build open-source hardware automatically by open-source EDA tools (10-15 years)


2030"三步走"规划

- 第一步:开源SoC——用3-5年为社区提供经过流片验 证的高质量RISC-V开源核、开源SoC设计
 - RISC-V处理器核IP、外围IP等
- 第二步:用开源工具链构建开源SoC——用5-7年逐步 构建一套基于开源EDA工具链、开源IP、开源工艺库的 开源SoC芯片设计流程
 - 将商业版工具、IP逐渐替换为开源版
 - 实现本科生用全开源工具开发开源芯片,带着自己芯片毕业
- 第三步:用开源工具链自动化构建开源硬件——用10-15年开发更智能、更自动化的开源工具,提高设计验证 效率
 - 形成开源芯片生态,降低芯片开发门槛

An overview of Work-in-Progress



XiangShan (XS): Open-Source High Performance RISC-V Core

XiangShan v1 (Yanqihu)

- RV64GC, 11-stage, 6-issue, out-of-order
- The real chip was back in January 2022
 - SoC: CPU, SPI Flash, UART, SD card, Ethernet, DIMM
 - Correctly running Debian with SD card and ethernet

SPECint 2006: 7.03@1GHz SPECfp 2006: 7.00@1GHz

SPECint 2006	@ 1GHz	SPECfp 2006 @ 1GHz		
400.perlbench	6.14	410.bwaves	9.28	
401.bzip2	4.37	416.gamess	6.59	
403.gcc	6.71	433.milc	8.41	
429.mcf	6.83	434.zeusmp	7.65	
445.gobmk	7.92	435.gromacs	4.99	
456.hmmer	5.24	436.cactusADM	3.97	
458.sjeng	6.85	437.leslie3d	6.93	
462.libquantum	17.71	444.namd	8.00	
464.h264ref	10.91	447.dealII	10.17	
471.omnetpp	5.65	450.soplex	7.03	
473.astar	5.16	453.povray	7.14	
483.xalancbmk	7.35	454.Calculix	2.86	
		459.GemsFDTD	8.35	
		465.tonto	6.42	
		470.lbm	10.39	
		481.wrf	7.26	

482.sphinx3

9.07

SSH into the Debian on XiangShan, and run a GUI program via X11 forwarding

wanghuizhe@open02:~\$ ssh -X xs@172.28.2.246 xs@172.28.2.246's password: Linux open02 4.20.0-44668-ge9c195ab0c63-dirty #109 Thu Feb 17 17:41:13 CST 2022 circle The programs included with the Debian GNU/Linux system are free software; the exact distribution terms for each program are described in the individual files in /usr/share/doc/*/copyright. Debian GNU/Linux comes with ABSOLUTELY NO WARRANTY, to the extent permitted by applicable law. You have no mail. Last login: Thu Feb 17 11:10:31 2022 from 172.28.9.102 xs@open02:~\$ xclock Warning: locale not supported by C library, locale unchanged

Х

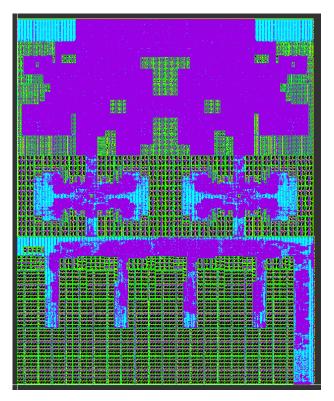
XiangShan v2 (Nanhu)

• Target performance: 2GHz@14nm, SPEC CPU2006 10/GHz (> ARM Cortex-76), 40% improvement over XS v1

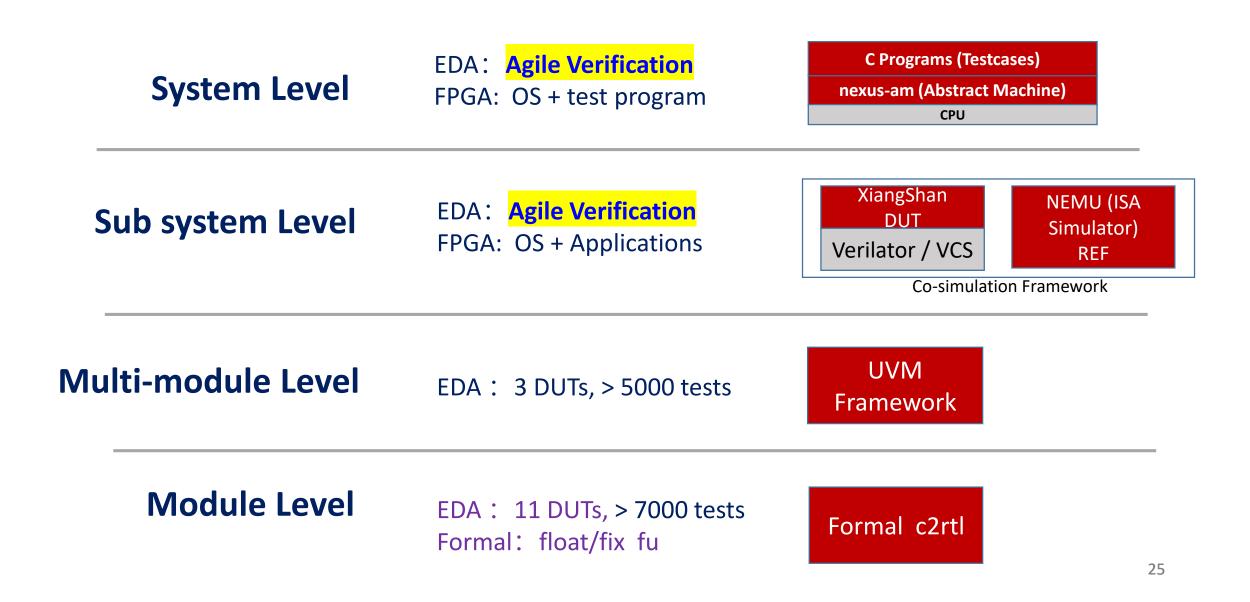
18.049

• Note: power and area are still poorer than Cortex-A76

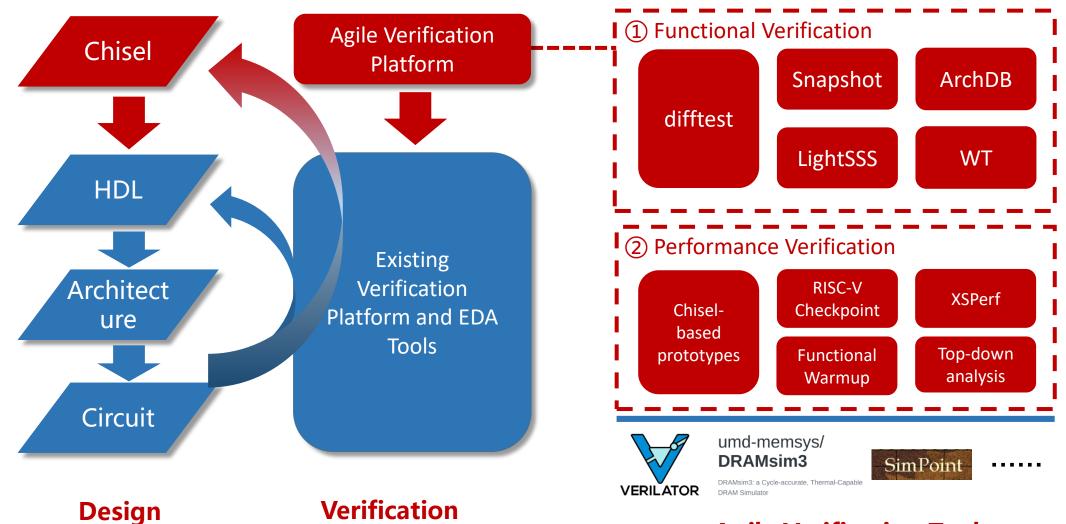
SPECint 2006: 9.55/GHz SPECfp 2006: 11.09/GHz


SPE

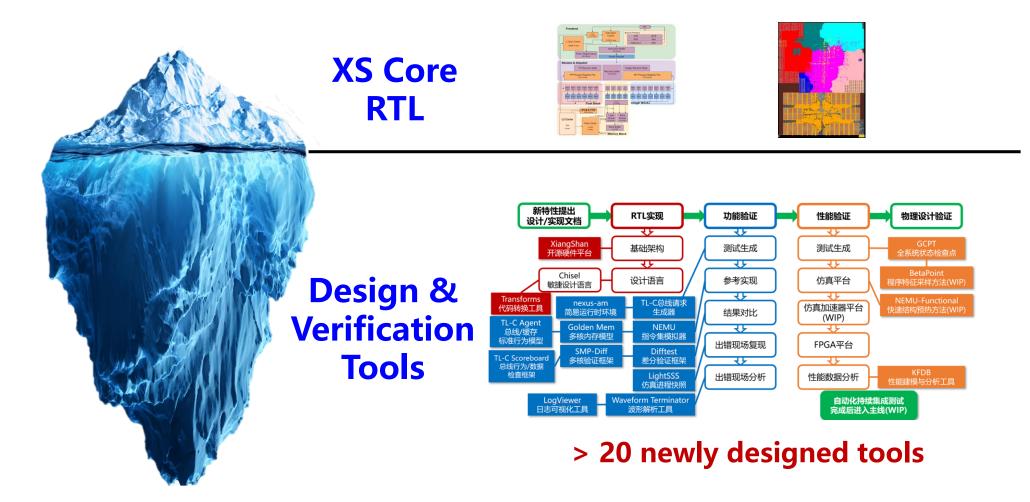
********SPECINT2006	*****	********SPECFP2006********		
400.perlbench	19.291	410.bwaves	18.04	
401.bzip2	11.348	416.gamess	23.82	
403.gcc	21.971	433.milc	18.32	
429.mcf	20.509	434.zeusmp	28.1	
445.gobmk	15.981	435.gromacs	17.53	
456.hmmer	19.222	436.cactusADM	24.22	
458.sjeng	17.203	437.leslie3d	20.27	
462.libquantum	36.989	444.namd	23.83	
464.h264ref	28.542	447.dealll	33.50	
471.omnetpp	14.009	450.soplex	25.6	
473.astar	14.196	453.povray	27.05	
483.xalancbmk	21.522	454.Calculix	9.18	
SPECint2006@2GHz	19.099	459.GemsFDTD	24.63	
SPECint2006/GHz	9.549	465.tonto	17.66	
3FEC///12000/8/12	9.549	<u>470.lbm</u>	32.05	
		481.wrf	19.72	
*Evaluation On F	PGA	482.sphinx3	28.35	
		SPECfp2006@2GHz	22.17	


*Evaluation On FPGA

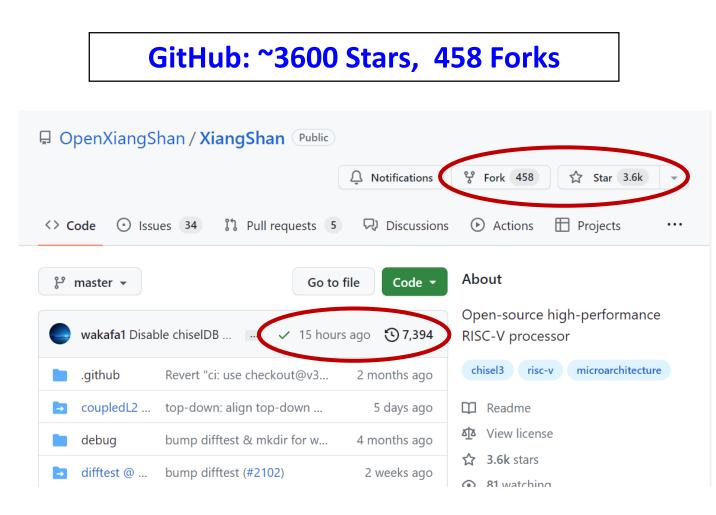
Silutoo	10.010
gamess	23.822
.milc	18.328
zeusmp	28.14
gromacs	17.532
.cactusADM	24.223
leslie3d	20.272
namd	23.837
dealli	33.505
soplex	25.64
povray	27.055
Calculix	9.185
GemsFDTD	24.637
tonto	17.669
lbm	32.056
wrf	19.728
sphinx3	28.353
Cfp2006@2GHz	22.175
Cfp2006/GHz	11.088


Layout of dual-core SoC

Four Levels of Verification for XiangShan



Agile Verification Flow and Tools


Agile Verification Tools 26

All Are Open-Sourced

Published on MICRO'2022, selected as IEEE Micro Top Picks

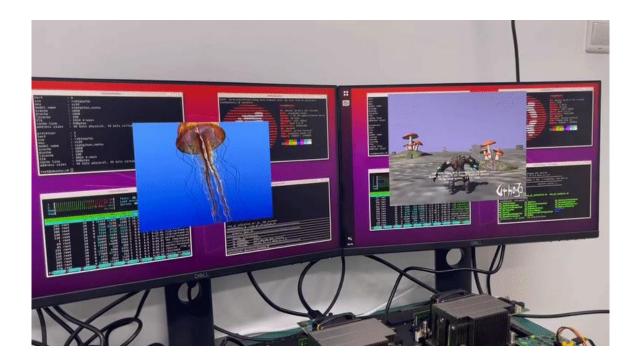
All Are Open-Sourced (cont.)

Nanhu Core Spec for Integration and Programming Guide

Contents

1	Abou	t This D	اب						
	1.1	Revisio	on History						
	1.2	Refere	nces						
	1.3	Websit	tes and Links						
	1.4	Termir	nology						
2	Nanh	u Core.	Core						
	2.1	Nanhu	CPU subsystem						
	2.2	Core F	eature						
	2.3	Instruc	ction set						
	2.4	Suppo	rted privilege mode						
	2.5	Manag	ement Signals						
	2.6	CPU M	icro Architecture						
		2.6.1	CPU Execution Pipeline						
		2.6.2	Load Store Unit						
		2.6.3	L1, L2 cache						
		2.6.4	L3 Cache						
		2.6.5	Atom operation						
		2.6.6	Hardware performance monitor						
		2.6.7	Virtual memory support 21+						
		2.6.8	Physical memory protection						
3	Nanh	u Integ	ration Guide						
	3.1	AXI In	AXI Interface						
		3.1.1	CPU Core Interfaces 31+						
	3.2	Memor	ry map						
	3.3	Clock a	and Reset						
		3.3.1	clock and reset timing explained						
		3.3.2	Clock guidelines						
		3.3.3	SDC File						
	3.4	Memor	ry & RF						
		3.4.1	Memory and RF description						
		3.4.2	SRAM List						
		3.4.3	SRAM Multi-Cycle Clock Setup						
	3.5	Clock I	Description						
		3.5.1	Synchronizer instantiation						
	3.6	Interru	upt						
		3.6.1	Functional description 40+	-					

XiangShan is recognized and adopted by companies


Already used (2022)

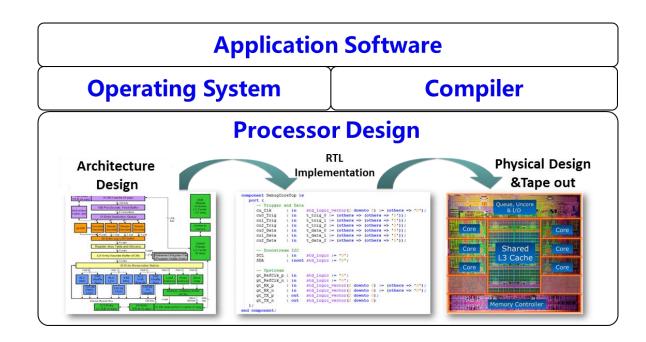
- 7nm SoC Testchip, tapeout
- 5nm Al Chip

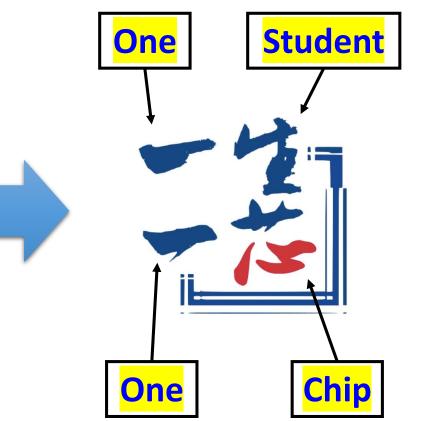
• Will use (2023)

- 28nm SoC Chip
- 16nm Testchip
- 12nm AI video chip
- 12nm Server CPU
- 7nm GPU
- 7nm DPU
- 7nm Server CPU

A startup (Xinchen Technology) took only two weeks to integrate dual XS cores into an SoC and run on FPGAs

A Joint Team for XiangShan v3


- About 10 companies
- Target ARM Neoverse N2
 - SPECCPU2006: 45 @ 3GHz (15/GHz)



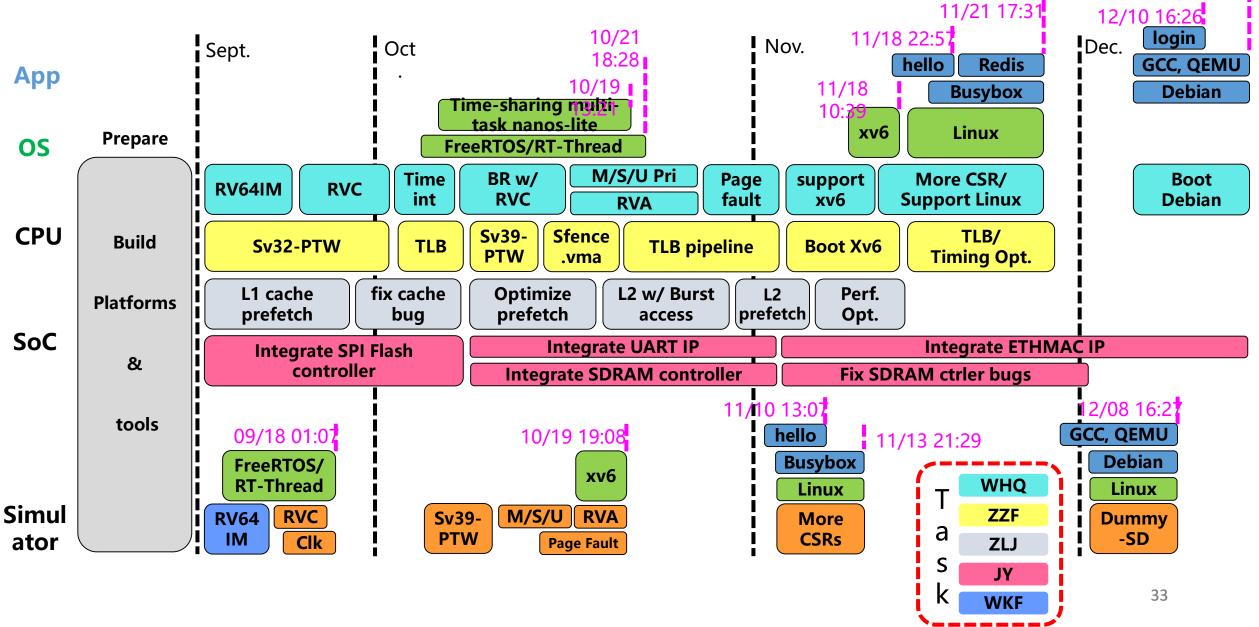
The One Student One Chip (OSOC) Initiative

- Learning-by-Doing: Teach undergraduates to build real chips
- Launched the OSOC Initiative in 2019

The 1st OSOC (2019)

- Five senior undergraduates participated
- Completed the design of a 64-bit RISC-V processor in four months
- The chip was taped out with 110nm and ran Linux and a self-built UCAScore OS

Yue Jin

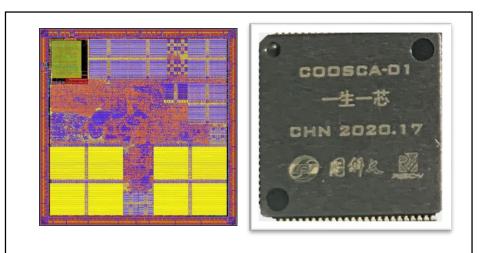

Huangqiang Wang

Kaifan Wang

Linjuan Zhang

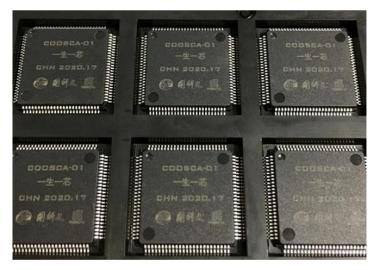
Zifei Zhang

4-month Development


12/13 14:26

NutShell: A Linux-Compatible RISC-V Processor Designed by Undergraduates

A 64-bit RISC-V Processor

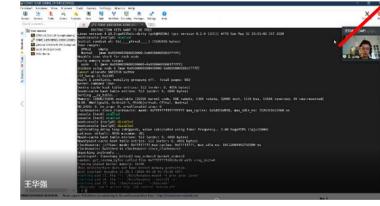

- Single-issue, 9-stage, in-order
- RV64IMAC, support M/S/U
- 2-bit BPU, 512 BTB, 16 RAS
- Sv39, hardware TLB refill
- 32K L1I & L1D
- Read consistency for L1I & L1D
- 128K L2 cache, next line prefetch
- Use Chisel
- SDRAM, SPI flash, UART
- Support Linux 4.18.0 kernel
- Support Busybox
- Can run Debian 11 on Emulator & FPGA

Tape-out w/ 110nm-node

- 110nm
- 10mm²
- 200mw@350MHz Typical
- TQFP100 package

Real Chips

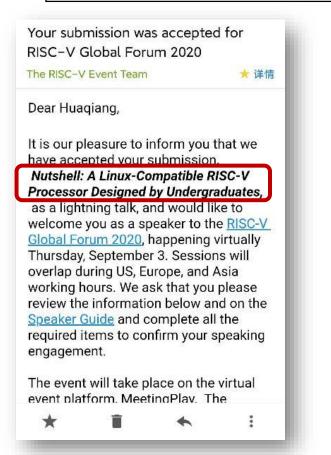
Chips


Run Linux Display CAS logo

Frequency: 350MHz

配置开关	倍率	50MHz晶振	100MHz晶振
000	1	50MHz	100MHz
001	1.5	75MHz	150MHz
010	2	100MHz	200MHz
011	2.5	125MHz	250MHz
100	2.75	137.5MHz	275MHz
101	3	150MHz	300MHz
110	3.5	175MHz	350MHz
111	4	200MHz	400MHz

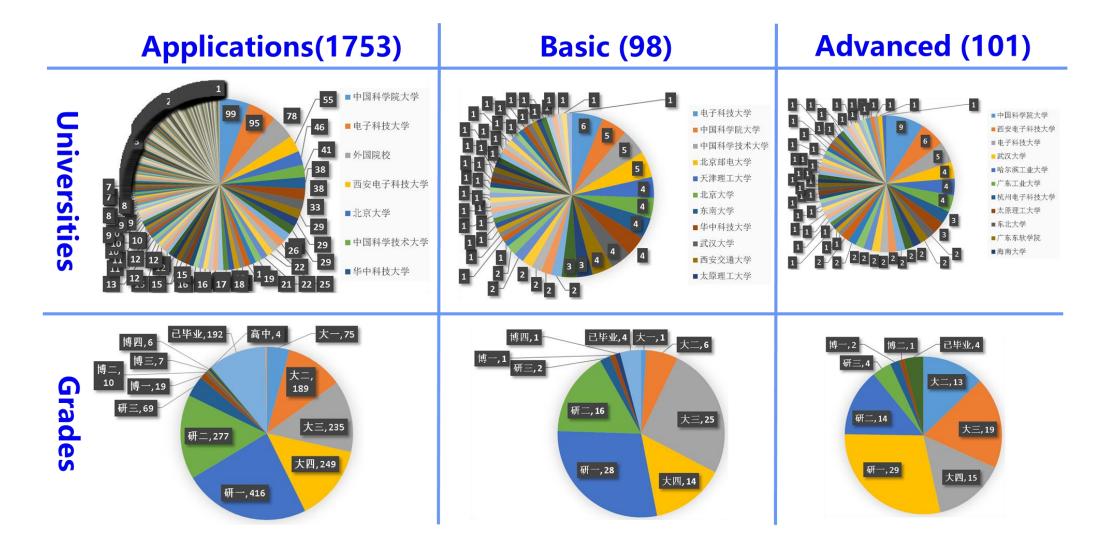
Demo



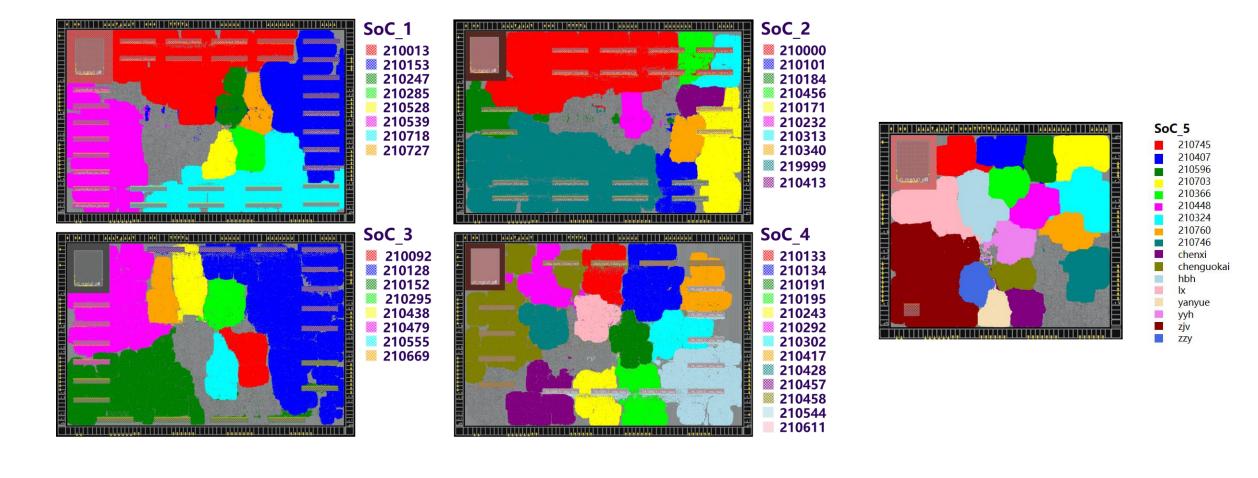
Theis Defense 2020.6.2

Accepted to RISC-V Global Forum 2020

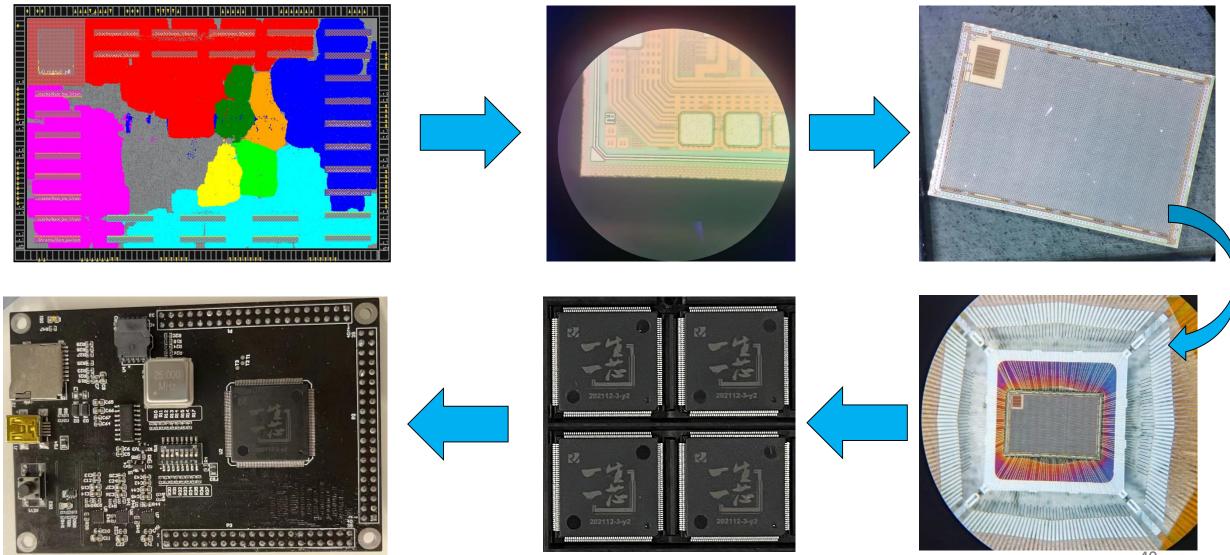
NutShell: A Linux-Compatible RISC-V Processor Designed by Undergraduates



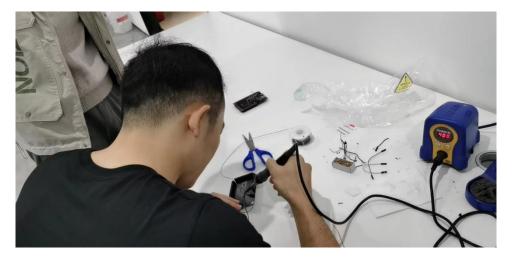
> 4000 students participated in the OSOC Initiative

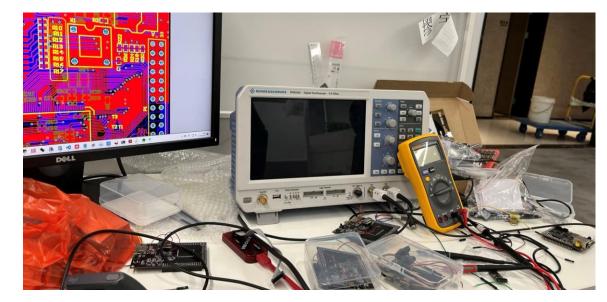

No.	Start	End of Enrollment	#Enrollment	#School	#Stu. Learning > 10%	#Stu. Finish
1 st	Aug, 2019	-	5	1	5	5
2 nd	Aug, 2020	-	11	5	11	11
3 rd	Jul, 2021	Sep, 2021	760	168	215	51
4 th	Feb, 2022	Aug, 2022	1753	328	215	16
5 th	Aug, 2022	In progress	1689	335	148	6
6 th	Will start in July, 2023					

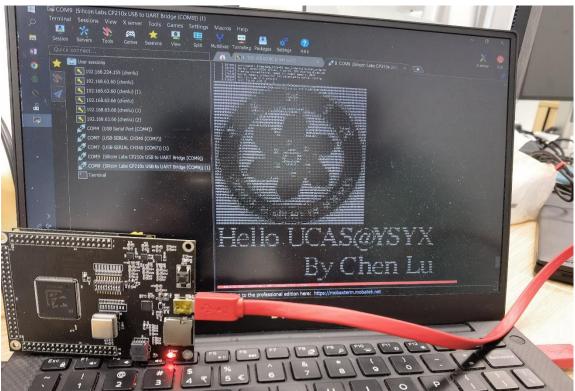
Updated: Jun 6th, 2023


Track how students are learning


GDSII Layouts of Chips Designed by 50 Students




Real Chips were Back



Testing Chips

Contributors to RVI Certification Course

• Translate Courses into Chinese

- RISC-V Overview
- RISC-V Instruction Set Architecture
- Assembly Language for RISC-V
- High Level Languages for RISC-V C Programming
- RISC-V Operating Systems & Tools

Faker Miao

Zhenwei Duan

Frank Liu

Asher Cao

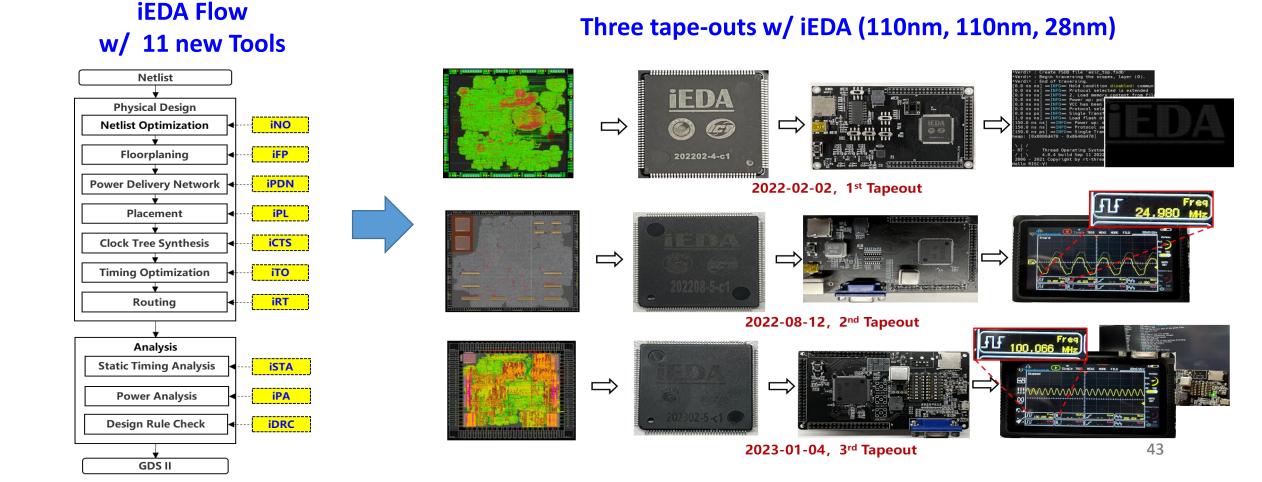
Haifan Yang

Caosy

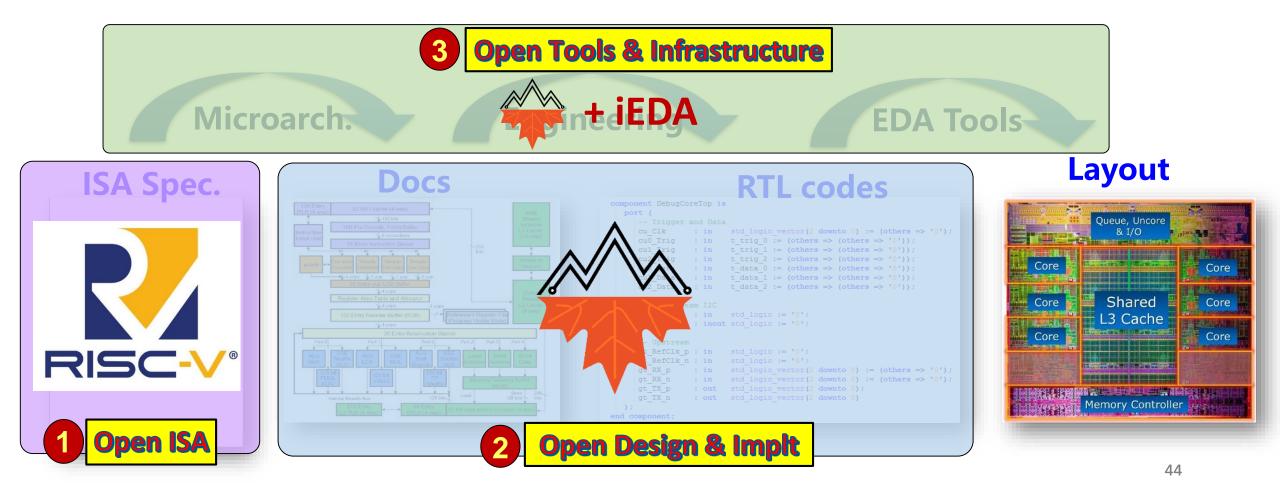
Rentao Ni

Ren Wei

Lu Chen


Jinlun Su

Jia⁄bîn Wu


Name	University		
Faker Miao	University of Science and Technology of China		
Zhenwei Duan	University of Science and Technology of China		
Frank Liu	Taiyuan University of Technology		
Asher Cao	University of Science and Technology of China		
Haifan Yang	Zhejiang Gongshang University		
Caosy	University of Science and Technology of China		
Rentao Ni	Northeastern University, China		
Ren Wei	Lanzhou University		
Jiabin Wu	ShanghaiTech University		
Lu Chen	University of Chinese Academy of Sciences		
Jinlun Su	Taiyuan University of Technology		

What's Next?

- Have developed an open-source EDA tools (iEDA) and completed three tape-outs
- Will let students use open-source EDA tools to build open-source Chips



Towards Three levels of OSCE

Summary

- RISC-V: A chip design that changes everything
 - 10 breakthrough of MIT TR 2023
- It is the best time for us to build a globally shared open-source chip ecosystem
- The Chinese community has been contributing and will contribute more to OSCE

Welcome to RISC-V Summit China 2023 in Beijing

Shangri-La Beijing

How to participate in RISC-V Summit China 2023

Sponsors

DDL: 30th June email: anxu@bosc.ac.cn

For Non-sponsors DDL: 15th July Exhibition display booths

Speakers

DDL: 5th July

Call for Speakers:

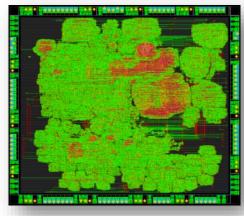
https://riscv-summit-

china.com/submit-my-talk.html

Notification to Authors : 20th July **Agenda Published :** 10th Aug

On-site attendance

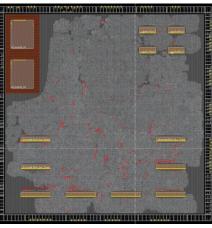
website: <u>https://riscv-</u> <u>summit-china.com</u> Registration will open at the end of June - beginning of July



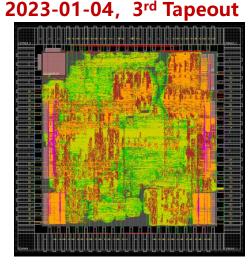
Thanks!

iEDA-Tapeout

- 1st Tapeout
 - 2022-02-02, 110nm node, 0.7M gates, Freq: 25MHz, Core Density: 30%
- 2nd Tapeout
 - 2022-08-12, 110nm node, 1.5M gates, Freq: 25MHz, Core Density: 35%
- 3rd Tapeout
 - 2023-01-04, 28nm node, 1.5M gates, Freq: 200MHz, Core Density: 40%


2022-02-02, 1st Tapeout

110nm node, 0.7M gates, 25MHz (5-level pipeline, IP:Chiplink, UART, SPI)



2022-08-12, 2nd Tapeout

110nm node, **1.5M gates** (11-level pipeline with cache、IP: UART、VGA、PS/2、SPI、SDRAM, Two PLL on SoC, Support Linux)

110nm	- >	28nm

28nm node, 1.5M gates (11-level pipeline with cache、IP: UART、VGA、PS/2、SPI、SDRAM, Two PLL on SoC, Support⁴Pinux)