
www.meep-project.eu

MEDEA: Improved
Memory-Level
Parallelism in a

decoupled
execute/access vector

accelerator
(work in progress)

Umair Riaz

Luis A. Plana

Peter Wilson

John D. Davis

Barcelona Supercomputing Center

Overview

• Motivation

• Introduction to MEDEA

• Microarchitecture

• Interfaces

• Supported types of requests

• Building blocks of MEDEA

• Discussion

2

Motivation

• Efficient use of memory bandwidth for sparse access patterns

• Reducing data movements between compute node and memory

• Reducing NoC traffic

• Efficient vector data processing

• Improve memory-level parallelism (MLP)

3

Introduction – A classical system

• A classical system’s representation

4

Introduction – MEDEA in a system

• A classical system with MEDEA

5

Introduction - MEDEA in ACME

• ACME increases MLP by shifting memory-accessing responsibilities from compute tile to

specialized Memory Engine for Decoupled Execute/Access (MEDEA)

• VPU is commonly known to exploit data-level parallelism (DLP), but with the addition of MEDEA, it

adds up capabilities for MLP

6

Microarchitecture - MEDEA

7

Microarchitecture - Interfaces

8

Microarchitecture – Interfaces (2)

• cNoC (compute NoC)  compute node

• vNoC (vector NoC)  LVRF

• Memory crossbar  interconnecting all the MEDEA

. tiles and memories

• Memory controller i/f  HBM and NVRAM

9

Microarchitecture – Types of Requests

Request Request Parameters Reply

cache miss – read physical address, length memory data

cache miss - write physical address, length, data completion acknowledge

virtual-to-physical address
translation

virtual address physical address

vector parameter set application-requested vector length granted vector length

vector load virtual address, addressing mode, vector
register, renamed vector register, (mode-
dependent parameters: stride, index vector)

(densified) memory data

vector store virtual address, addressing mode, vector
register, renamed vector register, (mode-
dependent parameters: stride, index vector)

completion acknowledge

atomic memory operations TBD completion acknowledge

10

Microarchitecture - MEDEA

11

Microarchitecture – Building Blocks

Vector Fragment Sequencer

12

Microarchitecture – Building Blocks (2)

Vector Fragment Sequencer

• RISC-V vector operations support following addressing modes

• unit-stride: managed as dense memory accesses

• strided, indexed: managed as sparse memory accesses

• In the case of strided or indexed mode, a fragment might end up having a single vector element

• All the elements from different fragments are collected and packed locally and transferred to

LVRF as a dense vector

• Less parasitic data movements

• Consequently, saving energy and NoC traffic

13

Microarchitecture – Building Blocks (3)

Prefetcher

14

Microarchitecture – Building Blocks (4)

Memory CPU (MCPU)

• A scalar processor

• Tightly-coupled memory and a low-latency interface to the memory controller

• Provides a collection of memory-intensive functions that can be accessed by the compute tiles

• Executing the functions locally and close to memory improves:

• Performance

• Energy

• NoC traffic

15

Discussion

• Sparse Matrix Vector (SpMV) benchmark simulation time comparison

16

www.meep-project.eu

Thank you!

umair.riaz@bsc.es

mailto:umair.riaz@bsc.es

