TRISTAN

<u>Together for <u>RIS</u>c-V <u>T</u>echnology and <u>Applicatio</u><u>N</u>s</u>

Patrick Pype Director Strategic Partnerships NXP Semiconductors

RISC-V Summit Barcelona, June 7th, 2023

Agenda

- How it all started...
- The TRISTAN consortium and project
- How TRISTAN contributes to the EU Roadmap on RISC-V and Open-Source
- Why TRISTAN needs ISOLDE ?
- Conclusions

Agenda

- How it all started...
- The TRISTAN consortium and project
- How TRISTAN contributes to the EU Roadmap on RISC-V and Open-Source
- Why TRISTAN needs ISOLDE ?
- Conclusions

SW I

How it all started... Europe to urgently catch up with China

"Alibaba introduced first RISC-V based product (XT910) in July 2020" (Source : https://www.nextplatform.com/2020/08/21/alibaba-on-the-bleeding-edge-of-risc-v-with-xt910/)

"For China, open source is an industrial policy tool and important part of its <u>push for</u> technological autonomy"

Source :

https://merics.org/en/shortanalysis/china-bets-open-sourcetechnologies-boost-domesticinnovation

How it all started... Why RISC-V in Europe ?

STRENGTHS

- Easy access & low barrier for SoC design
- Ability to customize
- Accessible data for safety & security analysis (whitebox)
- Availability of SW ecosystem
- Lower export control restrictions
- Less vulnerable to geo-political risks
- Strong academic support ; educational use
- Steers Innovation

OPPORTUNITIES

- Customization opportunities
- Sharing development costs
- Sharing support costs
- New licensing models
- Support to SME's
- New industrial leaders

WEAKNESSES

- Not Industrial Quality IP yet (HW/SW)
- Long-term guaranteed support to
- industrial users not yet established
- Risk of maintenance
- Lack of some IP (e.g. interconnect)

THREATS

- Risk not to create enough critical mass in Europe
- US/China competitors are running fast, with large investments and acceptance by leading end-user companies

Europe must develop the RISC-V supply chain to support autonomy in critical market sectors and reduce its dependency on US & China

European

Key Digital Technologies Joint Undertaking

Commission

How it all started...

European WG to create Recommendations & Roadmap

Recommendations and Roadmap for European Sovereignty in Open Source Hardware, Software, and RISC-V Technologies

Report from the

Open Source Hardware & Software Working Group

November 2021

Members of the Open Source HW/SW Working Group

Chair :

Patrick Pype Participants :

Jan Andersson Luca Benini Sven Beyer Holger Blasum Sylvain Depierre Marc Duranton Wolfgang Ecker Michael Gielda Edwin Hakkennes Andreas Koch Loic Lietar Andreas Mauderer Jan-Hendrik Oetjens Jérôme Quévremont John Round Javier Serrano Herbert Taucher

NXP Semiconductors

Cobham Gaisler ETH Zürich / Univ. Bologna Siemens SYSGO GmbH NanoXplore CEA Infineon Antmicro Ltd Technolution Technische Universität Darmstadt **GreenWaves Technologies** Bosch Bosch Thales NXP Semiconductors CERN Siemens

KDT JU Key Digital Technologies Joint Undertaking

Agenda

- How it all started...
- The TRISTAN consortium and project
- How TRISTAN contributes to the EU Roadmap on RISC-V and Open-Source
- Why TRISTAN needs ISOLDE ?
- Conclusions

TRISTAN Consortium

TRISTAN Kick-off Meeting Caen, France, 11-12 January 2023

Overarching Aim of TRISTAN Aim of the WP

Expand Mature Industrialize

the European RISC-V ecosystem in order to compete with existing commercial/proprietary alternatives ze

How?

- leveraging the Open-Source community to gain in productivity and quality
- defining a European strategy for RISC-V based designs including the creation of a repository of industrial quality building blocks to be used for SoC designs in different application domains (e.g. automotive, industrial, etc.)
- applying a holistic approach, covering both electronic design automation tools (EDA) and the full software stack
- exposing a large number of engineers to RISC-V technology, which will further strengthen adoption.

TRISTAN Objectives & Expected Impact

Objectives	Expected Impact 3-5 years after project end
Processor Development	At least 4 industrial RISC-V based SoC design starts per year
Eco-system of Industrial Quality SoC Building Blocks	At least 2 Building Blocks used in 4 industrial design-ins
SoC Development Infrastructure	Availability of SW stacks, development & EDA-tools TRISTAN stack visible in at least 1 Open-Source project per year
Vendor Independence	At least 80% of TRISTAN HW IP's simulates and synthesizes with at least 2 different vendors and Open-Source tools
Active EU Open-Source HW Community	At least 5 new requests outside TRISTAN consortium making use of TRISTAN results in the OpenHW Core-V CVA6 repository At least 10 references of TRISTAN are found in design-ins
Demonstration of Building Block Interoperability	At least 2 examples of Building Blocks interworking visible in design-ins
Pre-Certification & Validation	Effort of certifying a product composed of TRISTAN items is reduced by 80%

How Open-Source SW penetration can evolve towards an Open-Source mixed HW/SW eco-system

TRISTAN's 3 levels of operation

in order to encourage rapid industry adoption of an increasingly rich RISC-V eco-system

DEVELOPMENT	VALIDATION	OUTREACH
Extend RISC-V processor designs with new capabilities for industrial adoption	Clarify alignment with, and differentiation from other IS families	Introduce new engineers to RISC-V
Created supporting IP-blocks to industrial quality level, with simple and transparent licensing	Demonstrate that RISC-V addresses real- world problems as well, if not better, than existing proprietary solutions	Create a productive binding between Les, SMEs and RTOs working on RISC-V across Europe
Reduce EU dependence on 'opaque IP' blocks which cannot be independently verified	Demonstrate that developed toolchains are capable of rendering structured and full ASIC design by real tape-outs	Improve the relationship between the Open-Source and Industrial Communities
Create and solidify robust EDA tooloing for microcontroller, SoC and CPU designs		Educate the industrial community in how to work constructively with Open-Source
Develop world class SW tooling to develop RISC-V applications		Encourage commercial organizations to become less fearfull of Open-Source
		Build a reference repository for RISC-V compliant IP-blocks

TRISTAN's Scientific Methodology

TRISTAN Implementaton Plan & WP Structure

* artifacts = files accompanying a design (eg. placement constraints) or generated by a EDA tool (eg. generated code)

TRISTAN Building Blocks & Demonstrators

TRISTAN Virtual Repository connecting to established Open-Source repositories

Repositories Hosting Outputs from TRISTAN Project

Agenda

- How it all started...
- The TRISTAN consortium and project
- How TRISTAN contributes to the EU Roadmap on RISC-V and Open-Source
- Why TRISTAN needs ISOLDE ?
- Conclusions

How TRISTAN contributes to the EU Roadmap RISC-V and Open-Source

Positioning of TRISTAN developments in EU RISC-V & Open-Source Roadmap

Roadmap Elements

Repository of RISC-V based Processor Platforms

Domain-Specific Processor Features

Repository of Open Source HW Peripheral Blocks

Interconnect for Real-Time and Mixed Criticality

Interconnect for System Integration

Domain-Specific Accelerators

Software

Methodology and EDA Tools

Domain-Specific Demonstrators

Short TermMid-TermLong Term2-5 years5-10 years> 10 years

Extract from TRISTAN positioning on EU Roadmap

Positioning of TRISTAN developments in EU RISC-V & Open-Source Roadmap				
	Roadmap Elements	TRISTAN IP Developments	Comments	
	Repository of RISC-V based Processor Platforms			
	High-end: Highly customizable Multi-core Out of Order 64-bit open source infrastructure with the associated memory hierarchies (caches&coherency, off-chip) and communication (fast cores to cores, cores to accelerators, cores/accelerators to system). This should be suitable for various instances of processor IP.	I:Data-cache-WI3.1.5	Optimised Caches feature flexible strategies, multi-requestors, writeback control, support for error correction and performance stats etc. Applied to CVA6	
	Highly customizable high-end domain-specific cores for high-performance embedded system and/or general-purpose application (link with EuroHPC-call on HPC processors)	C:CVA6-W2.4.1, WI2.4.2, WI2.4.3, WI2.5.3, WI5.2.2 I:Data-Cache WI3.1.5 : L1D\$ optimized for high- performance applications	These are extendable CPUs, and uncore that are or will be open-source industrial-grade verified IPs for building RISC-V SoCs for application-class systems. CVA6 is a 6-stage, single issue, in-order CPU which implements the 64-bit RISC- V instruction set. It fully implements I, M, A and C extensions Hypervisor support for the application core RVV co-processor with support for low precision integer arithmetic and multi- precision floating point operations. Coprocessor interface based on CX-X-IF supporting memory access through cva6 internal load and store unit. design a superscalar and multi-issue architecture cva6 evolution to increase performance.	
	Domain-Specific Processor Features			
	Provide public artifacts for safety and security by architecture at an initial assurance level	I: Value-boundary-checking I:Side-channel-WI2.1.1 I: Lockstep/Ext Mem Security/ECC WI3.3.3 WI.2.1.3 definition of architectural features for safety to reach the highest ASIL levels as defined in the ISO26262 norm	Support for timing channel protection: ETH	

European Commission

KDT JU

How TRISTAN contributes to the EU Roadmap

Approach to European Success Story From Niche to Certified Mass Deployment

Approach to European Success Story From Niche to Certified Mass Deployment

Agenda

- How it all started...
- The TRISTAN consortium and project
- How TRISTAN contributes to the EU Roadmap on RISC-V and Open-Source
- Why TRISTAN needs ISOLDE ?
- Conclusions

Why TRISTAN needs ISOLDE ? Move into another dimension...

ISOLDE Consortium

ISOLDE Project

High Performance: 64bit, super-scalar, out-of-order

TRISTAN and ISOLDE Project

Synergise, Complement and Build a strong European Network

Item	Tristan	Isolde	Comment
Processor Development	Decent PerformanceCVA6 and Pulp	High PerformanceCVA6, Noel-V	To be proven in real designsIsolde strives for super scalar, out of order, 64 bit
Building Blocks for SoC/High Perf, Computing	SoC Buidling Blocks	 High performance and/or low power accelerators 	 In both cases (documentation, RTL, test-bench, drivers, other design artifacts Industry quality
SoC Development Infrastructure	 Focus on standard peripherals 	 Focus on High performance accelerators 	 Software stack (e.g., OS, libraries, middleware, and applications) Software development tools (e.g., compilers, linkers, debuggers) SoC construction tools (e.g., machine-readable IP block descriptions, automated SoC composition and optimization)
Vendor Indepence	 Validate with different colaterals 		 Avoid locking of HW-IP and SW-stack/tools to specific vendor

TRISTAN and ISOLDE Project

Synergise, Complement and Build a strong European Network

Item	Tristan	Isolde	Comment
Safety/Security		Especially multi-corePreparation of certification	 Features enabling Safety and/or Security Certification for high-performance RISC-V Computing
Research		 High Performance Computing research 	• ISOLDES's focus is high performance compute, TRISTAN's focus is SoC building
Open Source (OS)	 Active European OS Hardware Community 	 High Quality OS Hardware and Software IP 	 Both strive for deliverables given to open source
Demonstration of Building Block Interoperability	 Mainly models and FPGAs Interoperability between a high number of IPs 	 Mainly FPGAs and ASICs Make OS IPs de factor standard Focus: Cores and Accelerators 	 ASICs and FPGAs are targeted in both projects. Isolde strives for more ASIC demonstrators

TRISTAN and ISOLDE Consortium

Synergise, Complement and Build a strong European Network

Agenda

- How it all started...
- The TRISTAN consortium and project
- How TRISTAN contributes to the EU Roadmap on RISC-V and Open-Source
- Why TRISTAN needs ISOLDE ?
- Conclusions

- TRISTAN & ISOLDE are starting points for creating a European Eco-System of RISC-V and Open-Source
- Within 5 years RISC-V CPU's are at no functional disadvantage to establish competitive & competing architectures
- TRISTAN & ISOLDE will form the impetus to create low-, mid- and high-end platforms for different <u>strategic</u> <u>application domains</u> in Europe...

The Future : Automotive Platforms based on RISC-V Delivering on EU strategies in the automotive sector

From First Idea on TRISTAN to a Europen Success Story...

Two members of the consortium (Davide Schiavone – OpenHW Group & Adrian Evans – CEA) are giving a TRISTAN workshop on Friday morning : Open-Source Hardware Basic Training : <u>https://riscv-europe.org/side-events.html</u>

