From mW to MW: Scalable RISC-V Processors for AI Everywhere

Wei-han Lien Chief CPU Architect

May 2023

tenstorrent

Agenda

- Introduction
- RISC-V based Al
- RISC-V processor family
- Chiplets

Tenstorrent

- Founded in 2016 to build the best ML training/inference chips
- \$230M raised with 300 employees
- Two ML chips Grayskull and Wormhole in production, working on third
- Building a high-performance RISC-V processor
- Only company in the world with high-performance RISC-V and ML processors

Jim Keller

CEO, Digital Alpha processor, Apple A series, AMD Zen, Tesla Autonomous Driving system

Scalable Tensix Element

Licensable IP elements for scalable AI

Wormhole Products (2nd Gen device for AI at scale) 12nm AI Accelerator on PCIe Gen 4

N300s/d (Nebula, single or dual chip config available)

- Modular device with 1.6TB onboard ethernet
- Natively scalable to an arbitrary number of devices
- High performance at low cost

Nebula Server

- Pre-built, high-density AI servers in 4U enclosures for rack systems
- Comprised of 32 x n300s devices
- Includes backplane interconnect, active cooling units and SDK
- 12 PFLOP (BF8) at 6KW

Software stack

- Fully automated path from all popular ML framework to optimized implementation
- High quality results with no manual effort
- Same compiler targets one chip or many thousands of chips

RISC-V CPU

Ascalon O-o-O Superscalar Processor

tenstorrent Confidential

- Disruptive high-performance RISC-V processor for AI and server
- Projected Zen5 performance in 2024

RVA-23

- Advanced branch predictions
- 8-wide decode
- 3 LD/ST with large load/store queues
- 6 ALU/2 BR
- 2 256-bit vector units
- 2 FPU units

Tenstorrent RISC-V O-o-O Processor Family

CPU in AI

Host CPU

- X86 replacement
- Virtualization
- Security
- System Management
- Computation kernel scheduling/setup

CPU for AI Computation

Dataflow Graph Mapping

- AI computations
 - Data pre/post processing
 - Adaptive computing resources for future AI's algorithms
- CPU/GPU uniform node abstraction
 - Tenstorrent overlay technology
 - Same topological capability

CPU for Network Packet Processing

- Scale out for large computation
 - Smart NIC

• DPU

AI↔RISC-V Collaboration

Original: Embedded simple RISC-V processors for AI **Now:** Integrated general purpose X280 RISC-V

Future: Heterogenous highperformance RISC-V + AI chiplets

Chiplet

AEGIS Chiplet System Architecture

Non-coherent Transport	Memory Subsystem Interfaces		Memory Subsystem Interfaces		Non-coherent Transport
	System Cache		System Cache		
IO Coherent Transports	Ascalon Clusters 32 Cores	Coherent Transport	Coherent Transport	Ascalon Clusters 32 Cores	IO Coherent Transports
IO Coherent Transports	Ascalon Clusters 32 Cores	Coherent Transport	Coherent Transport	Ascalon Clusters 32 Cores	IO Coherent Transports
Non-coherent Transport	System Cache		System Cache		Non-coherent Transport
	Memory Subsystem Interfaces		Memory Subsystem Interfaces		

16 CPU-cluster system

- Companion CPU cluster for AI
- Inter-cluster coherency
- Directory-base coherency system
- Large memory cache per memory channel
- 4 cc-NUMA 32-core quadrants with hierarchical interconnection
- Ample coherent/non-coherent bandwidth for system scalability

Fabric Chiplet Floorplan

Heterogenous ML Processor

Server Chiplets

AI Everywhere

Tenstorrent: Open Business Model

- Tenstorrent works with partners to design, create, modify, optimize heterogenous designs
- Key technology providers for wide spectrum of products for our strategy partners
 - Al
 - CPU

Edge Devices

CPU Family

A

tenstorrent

Confidential

- CPU family
- Scalable ML processor
- Chiplets

Chiplets

MEMORY CHIPLET

-**↑** - D2D - - ↓ - - 1

- D2D

MEMORY CHIPLET

<u>_</u>↑_ D2D <u>_</u>↓_

MEMORY CHIPLET

 $-\uparrow -D2D-\psi$

-**↓**___↑___D2D ___↓___↑

MEMORY CHIPLET

G6

Î TTTTÎ P TTTTP P TTTTP

↑−D2D−↓-

• Tenstorrent RISC-V CPUs and ML technology unique position