
Developments in LLVM-based
toolchains and tooling for RISC-V

Alex Bradbury asb@igalia.com

RISC-V Summit Europe, 2023-06-08

What is LLVM?

int add(int a, int b) {
 return a+b;
}

What is LLVM?

define i32 @add(i32 %a, i32 %b) {
 %1 = add i32 %a, %b
 ret i32 %1
}

What is LLVM?

What is LLVM?

add.o: file format ELF32-riscv

Disassembly of section .text:
0000000000000000 add:
 0: 33 05 b5 00 add a0, a0, a1
 4: 67 80 00 00 ret

What is LLVM?

● A collection of modular compiler and toolchain technologies

● Modern C++ implementation

● Library-based design

● Permissively licensed

● C/C++ toolchain (Clang) and equivalents to various binutils tools

● Primary backend for e.g. Rust

● Used by many downstream vendor toolchains

What is LLVM: Beyond the compiler you know

● MLIR

● Flang

● libopenmp

● libcxx

● lld

● lldb

● libc

● BOLT

● …

RISC-V LLVM current status

● A ‘default’ (rather than experimental) backend since LLVM/Clang 9.0 (Sep

2019), first patches merged October 2017.

● Current extension support status: https://llvm.org/docs/RISCVUsage.html

● LLD (with linker relaxation) now also stable.

https://llvm.org/docs/RISCVUsage.html

RISC-V LLVM current status: vs RVA22U64 profile
Assembler Codegen

rv64imafdc ✔ ✔

zicsr, zicntr, zihpm ✔ N/A

zicclsm ✘ ✔(*)

zihintpause ✔ N/A

zba, zbb, zbs ✔ ✔

zicbom, zicbop, zicboz ✔ N/A

zfhmin, zfh ✔ ✔

zkt ✔ N/A

V ✔ ✔

zkn, zks ✔ ✔

RISC-V LLVM current status: vs draft RVA23U64 profile
Assembler Codegen

zicond (experimental) ✔ ✔(*)

zcb ✔ ✔

zfa (experimental) ✔ ✔

zbc ✔ ✔

zvfh (experimental) ✔ ✔(*)

zfbfmin (experimental) ✔ WIP

zvfbfmin, zvfbfwma
(experimental)

✔ WIP

zvkng, zvksg, zvbb, zvbc
(experimental)

✔ ✘

RISC-V LLVM: A success story for
cross-community upstream collaboration

(Partial) RISC-V LLVM credits

(Contributions in forms of code, reviews, advice, etc)

Sameer Abu Asal, Alexey Bataev, Alexey Baturo, Alex Bradbury, Qihan Cai, Chandler Carruth, Leonard Chan,

Ahmed Charles, Chih-Mao Chen, Piyou Chen, Shiva Chen, Kito Cheng, Vitaly Cheptsov, Nelson Chu, David

Chisnall, Liao Chunyu, Jessica Clarke, Simon Cook, Fraser Cormack, David Craven, Nick Desaulniers, Conor

Dooley, Sam Elliott, Hal Finkel, Eli Friedman, Mikhail Gadelha, Ondrej Glasnak, Eric Gouriou, Mandeep Singh

Grang, Jianjian Guan, Jonas Hahnfeld, Ben Horgan, Mitchell Horne, Petr Hosek, ShihPo Hung, Roger Ferrer

Ibanez, Ed Jones, Andrew Kelley, David Kipping, Paul Kirth, James Y Knight, Aditya Kumar, Yeting Kuo, Luke

Lau, Jim Lin, Michael Maitland, David Majnemer, Luís Marques, Ed Maste, John McCall, Dylan McKay,

Azharuddin Mohammed, Job Noorman, Tim Northover, Krzysztof Parzyszek, Ana Pazos, Wang Pengcheng,

Jordy Portman, Nitin John Raj, Philip Reames, Lewis Revill, John Russo, Colin Schmidt, Ed Schouten,

Andrews Schwab, Jun Sha, Ben Shi, Anton Sidorenko, Pavel Šnobl, Fangrui Song, Shao-Ce Sun, Sami

Tolvanen, Philipp Tomsich, Manolis Tsamis, Rui Ueyama,, Hsiangkai Wang, Ulrich Weigand, Mario Werner,

Jim Wilson, Brandon Wu, Xinlong Wu, Eugene Zalenko, Florian Zeitz, Leslie Zhai, Zhu Zijia, …

and certainly more I missed (sorry!)

Lots of contributors over time, but a small core set of most active contributors - more contributions very
welcome!

RISC-V LLVM stats

● About 4600 commits(*)

● About 56KLoC in llvm/lib/Target/RISCV

○ Many more lines in tests of course!

(*): git rev-list --count HEAD -- llvm/lib/Target/RISCV llvm/test/CodeGen/RISCV/ llvm/test/MC/RISCV/ lld/ELF/Arch/RISCV.cpp clang/test/CodeGen/RISCV/

How we collaborate in (RISC-V) LLVM

● Time-based releases

○ Prioritisation?

● RFCs

● Mailing list / discourse discussion

● ‘Code owners’ and pre-commit review

● Biweekly sync-up / coordination calls

How we collaborate in RISC-V LLVM: Related repos

Not-yet-ratified and vendor specific extensions
● Enable upstream collaboration on not-yet-ratified standards

○ Agreed policy on merging support behind ‘experimental’ flags (e.g.

-menable-experimental-extensions) with explicit spec version

○ Usual code review standards apply

○ No backwards compatibility or support expectation for anything other

than final ratified spec.

● Allow vendor extensions to be supported upstream, reducing need for

fragmentation for vendor-specific toolchains.

○ e.g. XVentanaCondOps, Xsfvcp, XTHeadVDot (and many others)

○ Considerations for inclusion: complexity/ invasiveness, support story,

user base, …

Compilation for RISC-V: Custom passes
● RISCVSExtWRemoval

● RISCVCodeGenPrepare

● RISCVExpandAtomicPseudoInsts

● RISCVInsertSETVLI

● RISCVRedundantCopyElimination

● RISCVMakeCompressible

● RISCVRVVInitUndef

What’s new (ish): Vector support
● Auto vectorisation with the loop vectorizer

○ Enabled upstream
○ Parallel downstream work with BSC (and others) on tail folding

using LLVM vector predication intrinsics (setting VL rather than
using masked loads and stores).

○ More tuning to be done
○ Has support for scalable vectors (and vector register grouping)

■ Can generate scalable strided loads and stores
■ Patches for scalable interleaved and deinterleaved

("segmented") loads and stores very close to landing

What’s new (ish): Vector support
● Auto vectorisation with the superword-level parallelism (SLP)

vectorizer
○ Not yet enabled upstream by default, but getting very close -

working to ensure the cost model disables it when it's not
beneficial.

○ Recent tuning e.g. using scalar instructions for copies/stores of
small fixed size vectors.

● Intrinsics
○ v0.11.1 supported, eagerly awaiting v1.0 finalisation.

What’s new (ish): BOLT
● BOLT is a post-link optimiser designed to speed up large applications.

○ => those suffering from high iTLB / I$ misses

● Takes information from a sampling profiler, disassembles functions and

reconstructs the CFG, performing (primarily) code layout optimisations

● RISC-V port largely finished and almost merged.

What’s new (ish): BOLT

Work needed to get BOLT upstream:

What’s new(ish): Other
● LLVM libc

○ Same level of completeness as x86-64

● CI improvements

● llvm-mca

● Various newly supported ISA extensions (merged or WIP). e.g.

z[f|d]inx, code size reduction extensions, vector crypto, zacas.

The future - RISC-V compilers work going forwards
● More ISA extensions, enablement of additional LLVM

tooling and features.

● More targeted optimisations due to real hardware,

different microarchitectures, investment in specific

workloads.

● Very different kind of work to early enablement efforts

● How to take on more of a leadership role within

toolchain-related projects?

Enablement

Stabilisation

Optimisation Maintenance

The future: features and development directions
Disclaimer: Not a declared roadmap, but an interpretation of areas people
likely want to invest in. Unordered.

● Ongoing autovectorisation improvements
● LTO fixes
● CI and performance tracking
● Performance modeling
● llvm-mca
● MLIR RISC-V vector dialect exploration
● µarch-specific tuning + scheduling models
● Enable SLP autovectorisation
● Improved constant materialisation
● Security hardening features
● Formal verification
● Fuzzing

● Fuzzing
● LLDB
● TLSDESC
● Atomics ABI changes
● RV32E codegen
● GlobalISel
● libc
● LLVM-built Linux userspace investments
● Vector crypto
● SIMD
● Easy custom instruction definition flow
● …

Get involved and keep track
● https://llvm.org/docs/RISCVUsage.html

● Biweekly contributor sync-ups (see “RISC-V on discourse.llvm.org)

● LLVM Weekly https://llvmweekly.org/

● Announcements posts for 6-monthly LLVM releases (https://muxup.com)

https://llvm.org/docs/RISCVUsage.html
https://llvmweekly.org/
https://muxup.com

End
● Thanks again to all of the (many) contributors so far.

● Closing summary

○ RISC-V LLVM as a model of successful upstream collaboration.

○ Recent milestones and developments.

○ A vision for the future.

● Contact: asb@igalia.com

mailto:asb@igalia.com

