Developments in LLVM-based
toolchains and tooling for RISC-V

Alex Bradbury asb@igalia.com

RISC-V Summit Europe, 2023-06-08

..
& 193lia

What is LLVM?

int b) {

int add(int a,

return a+b;

}

What is LLVM?

define 132 @add(i32 %a, i32 %b) {
—_— %1 = add 132 %a, %b
ret 132 %1
}

What is LLVM?

1\

/Register %

ch glue
ﬁ—‘—lr)

1
)

20 N

1
RISCVISD:RET FLAG
®
N o >,

GraphRoot
Loal Lonmssh Gar asladd.

(EntryToken\ (Register %0)
to t1 3
_ ch » i32) Y i32)
A e
5 i T
I 1 \\
S ERLEC 1)
: CopyFromReg CopyFromReg
K ©2 t4
' - :
PoB2 [en J L322 [o
1
1
I
1 o] 1)
Register $x10 !
] add
té6 i
! ts
i32 i :
' i32
U
|
0| 1|2
CopyToReg
t7

What is LLVM?

add.o: file format ELF32-riscv
—
Disassembly of section .text:
00000000000VOOO add:
0: 33 05 b5 006 add af, a0, al
4: 67 80 00 00 ret

What is LLVM?

e A collection of modular compiler and toolchain technologies

e Modern C++ implementation

e Library-based design

e Permissively licensed

e (/C++ toolchain (Clang) and equivalents to various binutils tools
e Primary backend for e.q. Rust

e Used by many downstream vendor toolchains

What is LLVM: Beyond the compiler you know

e MLIR
e Flang

e libopenmp

o |ibcxx
e |Ild

e |lldb

e libc

e BOLT

RISC-V LLVM current status

e A ‘default’ (rather than experimental) backend since LLVM/Clang 9.0 (Sep
2019), first patches merged October 2017.

e Current extension support status: https://llvm.org/docs/RISCVUsage.html

e LLD (with linker relaxation) now also stable.

https://llvm.org/docs/RISCVUsage.html

RISC-V LLVM current status: vs RVA22U64 profile

Assembler Codegen
rv64imafdc v v
zicsr, zicntr, zihpm (4 N/A
zicclsm X v (%)
zihintpause (4 N/A
zba, zbb, zbs v v
zicbom, zicbop, zicboz (4 N/A
zfhmin, zfh v v
zkt v N/A
\% v v
zkn, zks v v

4

RISC-V LLVM current status: vs draft RVA23U64 profile

(experimental)

Assembler Codegen
zicond (experimental) v v (")
zcb (4 v
zfa (experimental) (4 v
zbc v v
zvfh (experimental) v v (")
zfbfmin (experimental) (4 WIP
zvfbfmin, zvfbfwma v WIP
(experimental)
zvkng, zvksg, zvbb, zvbc (V4 X

RISC-V LLVM: A success story for
cross-community upstream collaboration

(Partial) RISC-V LLVM credits

(Contributions in forms of code, reviews, advice, etc)

Sameer Abu Asal, Alexey Bataev, Alexey Baturo, Alex Bradbury, Qihan Cai, Chandler Carruth, Leonard Chan,
Ahmed Charles, Chih-Mao Chen, Piyou Chen, Shiva Chen, Kito Cheng, Vitaly Cheptsov, Nelson Chu, David
Chisnall, Liao Chunyu, Jessica Clarke, Simon Cook, Fraser Cormack, David Craven, Nick Desaulniers, Conor
Dooley, Sam Elliott, Hal Finkel, Eli Friedman, Mikhail Gadelha, Ondrej Glasnak, Eric Gouriou, Mandeep Singh
Grang, Jianjian Guan, Jonas Hahnfeld, Ben Horgan, Mitchell Horne, Petr Hosek, ShihPo Hung, Roger Ferrer
Ibanez, Ed Jones, Andrew Kelley, David Kipping, Paul Kirth, James Y Knight, Aditya Kumar, Yeting Kuo, Luke
Lau, Jim Lin, Michael Maitland, David Majnemer, Luis Marques, Ed Maste, John McCall, Dylan McKay,
Azharuddin Mohammed, Job Noorman, Tim Northover, Krzysztof Parzyszek, Ana Pazos, Wang Pengcheng,
Jordy Portman, Nitin John Raj, Philip Reames, Lewis Revill, John Russo, Colin Schmidt, Ed Schouten,
Andrews Schwab, Jun Sha, Ben Shi, Anton Sidorenko, Pavel Snobl, Fangrui Song, Shao-Ce Sun, Sami
Tolvanen, Philipp Tomsich, Manolis Tsamis, Rui Ueyama,, Hsiangkai Wang, Ulrich Weigand, Mario Werner,
Jim Wilson, Brandon Wu, Xinlong Wu, Eugene Zalenko, Florian Zeitz, Leslie Zhai, Zhu Zijia, ...

and certainly more | missed (sorry!)

Lots of contributors over time, but a small core set of most active contributors - more contributions very " A
welcome! >

RISC-V LLVM stats

e About 4600 commits(*)
e About 56KLoC in llvm/lib/Target/RISCV

o Many more lines in tests of course!

(*): git rev-list --count HEAD -- 1llvm/lib/Target/RISCV 1llvm/test/CodeGen/RISCV/ 1llvm/test/MC/RISCV/ 11d/ELF/Arch/RISCV.cpp clang/test/CodeGen/RISCV/

How we collaborate in (RISC-V) LLVM

e Time-based releases
o Prioritisation?
e RFCs
e Mailing list / discourse discussion
e 'Code owners’ and pre-commit review

e Biweekly sync-up / coordination calls

How we collaborate in RISC-V LLVM: Related repos

riscv-non-isa/riscv-elf-psabi-doc

A RISC-V ELF psABI Document

@ Makefie W 490 ¥ 136

riscv-non-isa/riscv-toolchain-conventions

Documenting the expected behaviour and supported command-
switches for GNU and LLVM based RISC-V toolchains

% 98 P21

riscv/riscv-c-api-doc

Documentation of the RISC-V C API
% 44 P13

riscv-non-isa/riscv-asm-manual

RISC-V Assembly Programmer's Manual
* 1.2k P 216

riscv/riscv-isa-manual

RISC-V Instruction Set Manual

@1ex K27k P 474

riscv-non-isa/rvv-intrinsic-doc

@®@c K190 Peo

Not-yet-ratified and vendor specific extensions

Enable upstream collaboration on not-yet-ratified standards
o Agreed policy on merging support behind ‘experimental’ flags (e.qg.
-menable-experimental-extensions) with explicit spec version

o Usual code review standards apply

o No backwards compatibility or support expectation for anything other

than final ratified spec.

Allow vendor extensions to be supported upstream, reducing need for
fragmentation for vendor-specific toolchains.
o e.g. XVentanaCondOps, Xsfvcp, XTHeadVDot (and many others)

o Considerations for inclusion: complexity/ invasiveness, support story,

&
user base, ... e

Compilation for RISC-V: Custom passes

RISCVSExtWRemoval
RISCVCodeGenPrepare
RISCVExpandAtomicPseudolnsts
RISCVInsertSETVLI
RISCVRedundantCopyElimination
RISCVMakeCompressible
RISCVRVVInitUndef

What’'s new (ish): Vector support

Auto vectorisation with the loop vectorizer

(©)

(©)

Enabled upstream
Parallel downstream work with BSC (and others) on tail folding
using LLVM vector predication intrinsics (setting VL rather than
using masked loads and stores).
More tuning to be done
Has support for scalable vectors (and vector register grouping)
m Can generate scalable strided loads and stores
m Patches for scalable interleaved and deinterleaved
("segmented"”) loads and stores very close to landing

What’'s new (ish): Vector support

e Auto vectorisation with the superword-level parallelism (SLP)
vectorizer
o Not yet enabled upstream by default, but getting very close -
working to ensure the cost model disables it when it's not
beneficial.
o Recent tuning e.q. using scalar instructions for copies/stores of
small fixed size vectors.
e Intrinsics
o v0.11.1 supported, eagerly awaiting v1.0 finalisation.

What's new (ish): BOLT

e BOLT is a post-link optimiser designed to speed up large applications.
o => those suffering from high iTLB / IS misses
e Takes information from a sampling profiler, disassembles functions and
reconstructs the CFG, performing (primarily) code layout optimisations

e RISC-V port largely finished and almost merged.

What's new (ish): BOLT

Work needed to get BOLT upstream:

main

jitlink

What's new(ish): Other

LLVM libc
o Same level of completeness as x86-64
Cl improvements
llvm-mca
Various newly supported ISA extensions (merged or WIP). e.q.

z[f|d]inx, code size reduction extensions, vector crypto, zacas.

The future - RISC-V compilers work going forwards

e More ISA extensions, enablement of additional LLVM

tooling and features. Enablement
o :
e More targeted optimisations due to real hardware,
Stabilisation
different microarchitectures, investment in specific
/\

workloads.

Optimisation Maintenance
e \Very different kind of work to early enablement efforts Q/ Q

e How to take on more of a leadership role within

toolchain-related projects?

The future: features and development directions

Disclaimer: Not a declared roadmap, but an interpretation of areas people

likely want to invest in. Unordered.

Ongoing autovectorisation improvements
LTO fixes

Cl and performance tracking
Performance modeling

llvmn-mca

MLIR RISC-V vector dialect exploration
parch-specific tuning + scheduling models
Enable SLP autovectorisation

Improved constant materialisation
Security hardening features

Formal verification

Fuzzing

Fuzzing

LLDB

TLSDESC

Atomics ABI changes

RV32E codegen

GloballSel

libc

LLVM-built Linux userspace investments
Vector crypto

SIMD

Easy custom instruction definition flow v’ A
>

Get involved and keep track
e https://llvm.org/docs/RISCVUsage.html

e Biweekly contributor sync-ups (see "RISC-V on discourse.llvm.org

e LLVM Weekly https://llvmweekly.org/

e Announcements posts for 6-monthly LLVM releases (https://muxup.com

Muxup

What's new for RISC-V in LLVM
5

202203,
LLVM 15.0.0 was released around about two weeks ago now, and | wanted to highlight

some of RISC-V specific changes or improvements that were introduced while going into a
little more detail than | was able to in the release notes.

In case you're not familiar with LLVM's release schedule, it's worth noting that there are two
major LLVM releases a year (i. one roughly every 6 months) and these are timed releases as
opposed to being cut when a pre-agreed set of feature targets have been met. We're very
fortunate to benefit from an active and growing set of contributors working on RISC-V
supportin LLVM projects, who are responsible for the work | describe below - thank you! |
coordinate biweekly sync-up calls for RISC-V LLVM contributors, so if you're working in this
area please consider dropping in.

Linker relaxation

Linker relaxation is a mechanism for allowing the linker to optimise code sequences at link
time. A code sequence to jump to a symbol might conservatively take two instructions, but
once the target address is known at link-time it might be small enough to it in the
immediate of a single instruction, meaning the other can be deleted. Because a linker
performing relaxation may delete bytes (rather than just patching them), offsets including
those for jumps within a function may be changed. To allow this to happen without breaking
program semantics, even local branches that might typically be resolved by the assembler
must be emitted as a relocation when linker relaxation is enabled. See the description in the
RISC-V psABI or Palmer Dabbelt's blog post on linker relaxation for more background.
Although LLVM has supported codegen for linker relaxation for a long time, LLD (the LLVM
linker) has until now lacked support for processing these relaxations. Relaxation is primarily
an optimisation, but processing of R_RISCY_ALIGN (the alignment relocation) is necessary for

Muxup

What's new for RISC-V in LLVM
16

2023Q1. Last update Mar 2023, History &

LLVM 16.0.0 was just released today. and as | did for LLVM 15, | wanted to highlight some of
the RISC-V specific changes and improvements. This is very much a tour of a chosen subset
of additions rather than an attempt to be exhaustive. If you're interested in RISC-V, you may
also want to check out my recent attempt to enumerate the commercially available RISC-V.
SoCs and if you want to find out what's going on in LLVM as a whole on a week-by-week
basis, then I've got the perfect newsletter for you.

In case you're not familiar with LLVM's release schedule, it's worth noting that there are two
major LLVM releases a year (ie. one roughly every 6 months) and these are timed releases as
opposed to being cut when a pre-agreed set of feature targets have been met. We're very
fortunate to benefit from an active and growing set of contributors working on RISC-V
supportin LLVM projects, who are responsible for the work | describe below - thank you! |
coordinate biweekly sync-up calls for RISC-V LLVM contributors, so if you're working in this
area please consider dropping in.

Documentation

LLVM 16 is the first release featuring a user guide for the RISC-V target (16.0.0 version,
current HEAD. This fills a long-standing gap in our documentation, whereby it was difficult
to tell at a glance the expected level of support for the various RISC-V instruction set
extensions (standard, vendor-specific, and experimental extensions of either type] in a given
LLVM release. We've tried to keep it concise but informative, and add a brief note to describe
any known limitations that end users should know about. Thanks again to Philip Reames for
kicking this off, and the reviewers and contributors for ensuring it's kept up to date.

Vectorization

https://llvm.org/docs/RISCVUsage.html
https://llvmweekly.org/
https://muxup.com

End

e Thanks again to all of the (many) contributors so far.

e (losing summary
o RISC-V LLVM as a model of successful upstream collaboration.
o Recent milestones and developments.

o A vision for the future.

e Contact: asb@igalia.com

mailto:asb@igalia.com

