
RISC-V Code Size 
Reduction with 
Zc and beyond 

RISC-V Summit Barcelona

June 2023

Tariq Kurd



2© 2023 Codasip. All rights reserved. 

Thanks to all contributors!

Finally - Zc is ratified! 



3© 2023 Codasip. All rights reserved. 

Zc extensions (grey - existing, purple - new)

Zca

Zcd

Zdf 

Zcb 

Zcmp Zcmt 

→ Lower power
Smaller flash sizes 
Smaller chip-area

Higher performance



4© 2023 Codasip. All rights reserved. 

The Zc extensions 

• Zca - C extension excluding c.f* (all fp load/store)]
• Zcf - c.flw*, c.fsw*

• C = Zca+Zcf if F is implemented
• Zcf encodings could be repurposed in the future

• Zcd - c.fld*, c.fsd*
• C = Zca+Zcf+Zcd if D is implemented (implies F)

• Zcmp/Zcmt already repurpose some of the Zcd encodings
• They reuse some of the code points from c.fsdsp

• Zcb - only allocates reserved encodings

Free up 
encoding 

space



5© 2023 Codasip. All rights reserved. 

The Zcb extension

• 11 (RV32)/12(RV64) 16-bit encodings 
• Map onto existing functionality

• Included in RVA23
• should be used wherever C is included 
• requires Zbb, M (or Zmmul) to get the full set

• Typically saves 0.5-2% of code-size and only costs 
(up to) 12 lines in your decoder

Simple enough 
for all 

architectures



6© 2023 Codasip. All rights reserved. 

Zcb instruction summary
16-bit 
mnemonic

32-bit target 
encoding

16-bit 
mnemonic

32-bit target 
encoding

16-bit 
mnemonic

32-bit target 
encoding

c.lbu lbu c.zext.b andi …, 0xff c.zext.w add.uw …, 
zero (Zbb)

c.lhu lhu c.sext.b sext.b (Zbb) c.sext.h sext.h (Zbb)

c.lh lh c.zext.h zext.h (Zbb) c.not xori ….,  -1

c.sb sb c.sh sh c.mul mul 
(M/Zmmul)



7© 2023 Codasip. All rights reserved. 

The Zcmp extension 

• Targets function call prologues and epilogues
• Push/Pop functionality

• Gives the expansion from 16-bit encodings to a series of existing 32-
bit encodings

• Moving two argument registers at once
• to/from a0,a1 and saved registers

• All reuse encoding space from c.fsdsp

• Saves 6.5% on average, but can be much higher

Massive 
size saving for 

code with many 
function calls



8© 2023 Codasip. All rights reserved. 

The Zcmt extension

• Replace 32/64-bit sequences used for static function calls
• Huge benefits for large executables

• In the v8 javascript engine: using only one table jump entry  to replace every 64-bit 
call to one debug symbol called by every assertion saved ~400KB!

• 64-bit calls are required when the function is more than ±1MB away
• Also reuses encoding space from c.fsdsp

• Saves 4% on average, but many benchmarks save over 5%



9© 2023 Codasip. All rights reserved. 

Room for future 16-bit encodings

• 16 bit load/store instructions use 1024 code-points each
• Zcd and Zcf have 4096 code points each

• New instructions use minimal code-points
• Zcmt uses 256
• Zcmp uses 

• 64   - cm.push
• 192 - cm.pop*
• 128 - cm.mv*

• Zcd encoding space is currently 15.6% allocated
• Zcf encoding space is currently 0% allocated

→ Zcd/Zcf 
encoding space is 

only 7.8% 
allocated 



10© 2023 Codasip. All rights reserved. 

Instruction table for custom extension

Based on 
well-known 
dictionary 

compression 
techniques

Benchmarking 
results show 

6%-7% 
reduction in 
code-size

Very similar to 
Zcmt - but with 

table of 
common 32-bit 

instructions 

Memory table of 
32-bit 

instructions 
indexed with a 

16-bit encoding

→ Will be available 
in Codasip cores 

later this year 



11

Summary

© 2023 Codasip. All rights reserved. 

• Zc saves about 12.5% on average
• The actual saving varies wildly with the application

• Instruction table gets this to maybe 18%
• Good enough to be competitive with existing 

commercial architectures
• Space available for more compressed encodings
• With RISC-V cores being so popular these code-

size savings are really important
• lower power, smaller flash sizes, smaller chip-area
• higher performance due to better cache utilisation etc.



12© 2023 Codasip. All rights reserved. 

Useful links

• Zc benchmarking
• https://docs.google.com/spreadsheets/d/1bFMyGkuuulBXuIaMsjBINoCWoLwObr1l9h

5TAWN8s7k/edit#gid=1837831327
• Prebuilt toolchain (go to CORE-V)

• https://www.embecosm.com/resources/tool-chain-downloads/
• Development status of SAIL, ACT etc:

• https://github.com/riscv-admin/dev-partners/issues
• see issues 2, 4, 5, 6

• LLVM development
• https://github.com/plctlab/llvm-project/tree/riscv-zce-llvm14

https://docs.google.com/spreadsheets/d/1bFMyGkuuulBXuIaMsjBINoCWoLwObr1l9h5TAWN8s7k/edit#gid=1837831327
https://www.embecosm.com/resources/tool-chain-downloads/
https://github.com/riscv-admin/dev-partners/issues/2
https://github.com/plctlab/llvm-project/tree/riscv-zce-llvm14

