

GreenRio: A Linux-Compatible RISC-V Processor Designed for Open-Source EDA Implementations

Yifei Zhu, Xinze Wang, Guohua Yin, Yihai Zhang, Zhengxuan Luan, Mingzi Wang, Peichen Guo, Xinlai Wan, Shenwei Hu, Dongyu Zhang, Qiaowen Yang and Zhangxi Tan* **RISC-V International open-source Laboratory**

Outline

- **Background and Motivation**
- <u>GreenRio Development History</u>
- User Experience of Open Toolchains
- Design Space Exploration in RISC-V Chips and OpenEDA

Over 20 years ago..

Designing a 3GHz, 130nm, Intel ® Pentium® 4 Processor Daniel Deleganes, Jonathan Douglas, Badari Kommandur, Marek Patyra Intel Architecture Group 2501 NW 229th Ave. M/S RA2-401. Hillsboro, OR 97124 USA (503)-613-9278(ph), (503)-712-2776(fax), daniel.j.deleganes@intel.com

- Increasing complexity of IC design leads to high demand on EDA flow
- Traditional fabrication methods Vs Open source toolchains and open PDKs
- Open source projects prevent EDA licenses' limitations

Motivation

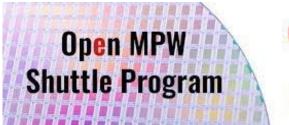
RIOS

GreenRio

ore by the RIOS Lab (r

slab.org) is a 64-bit

GreenRio on Twitter


out-of-order RISC-V processor designed in

- Few designs are developed with open fabrication flow
- Existing open chips are too simple to push the boundary of open EDA toolchains

Current RISC-V cores serving as example designs in the OpenEDA repository:

Design	EH1	IBEX	Count	biriscv	GreenRio1.0	GreenRio2.0
Properties	RV32	RV32	RV32	RV32	RV64	RV64
Pipeline stage	6	2 or 3	2 or 3	6 or 7	<mark>7</mark>	7
Issue Width	single	single	single	dual	dual	dual
Out-of-Order	✓	×	×	×	<mark>√</mark>	v 2
Gate count (K)	17	10	20	67	<mark>60</mark>	250
nost complay d				la secte at a	 ← Tweet	Linux compatible

The most complex design among 600+ OpenMPW submissions

Joodle

Motivation

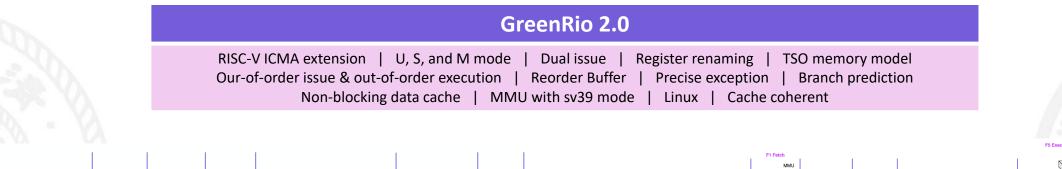
Optimize the OpenEDA along with the RISC-V CPU together & Put explorations in the flow at various stages

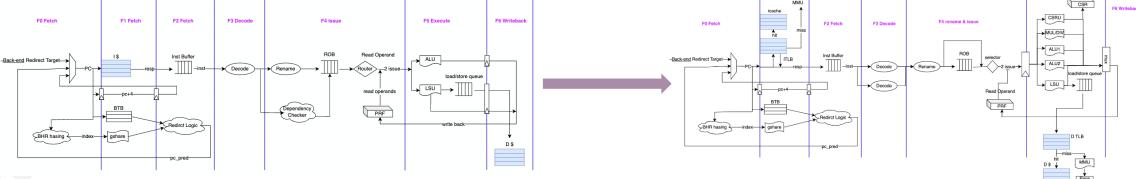
GreenRio:

- 1. Build a RISC-V processor from scratch that is fully compatible with the Open flow
- 2. Drive the growth of both chips and EDA tools through a real and reasonable design
- 3. Conduct researches in Open-Chip field through a meaningful and non-toy-like design instance
- 4. Facilitate chiplets and multi-physics through innovation in both fabrication flow and models

OpenEDA's iteration RISC-V chip's development

Continued Semiconductor Innovation

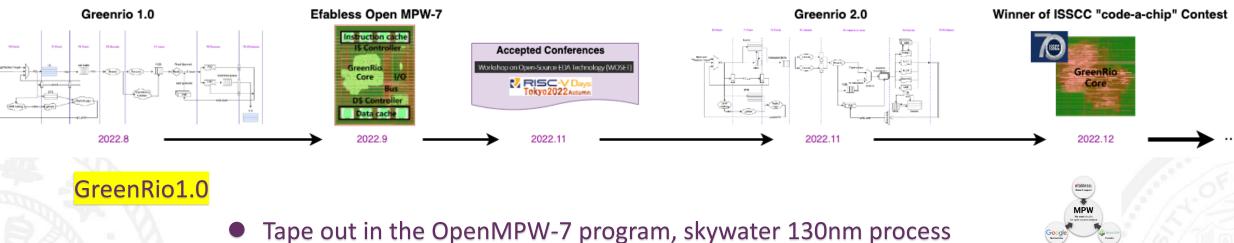

back


GreenRio Development History

RIOS

• With modern processors characteristics

GreenRio 1.0	
RISC-V I extension M mode Dual issue Register renaming Reorder Buffer Precise exception Branch prediction	



GreenRio Development History

RIOS

• Milestone of Greenrio

- Tape out in the OpeniviPW-7 program, skywater 150h
- Related works are accepted by WOSET
 - WOSET 2022 Schedule November 3, 2022 Papers 1 Article Author(s) Duration Viierethne I Karunarathne Mitra, Peh Xu. Xiao, Luo Liang 8:40 20 Euphrosine 9:00 20 Zhu Yin Wand e EDA Elo 9:20 Liang, Edwards RSIM: A Switch-Leve ulator and Dynai alvsis Tool

Share the experience in RISC-V Days Tokyo 2022 Autumn

RIOS and Google OpenEDA Team @ Yokohama Japan, 11/2022

7

GreenRio Development History

RIOS

GreenRio2.0

- Benchmark in the OpenEDA domain
- Inspire the RISC-V community and drive growth for opensource semiconductor fabrication
 - **GreenRio1:** https://github.com/b224hisl/rioschip **GreenRio2:** https://github.com/0616ygh/GreenRio2
- Future Work:

Enhance the performance and scalability of GreenRio while further optimizing EDA tools

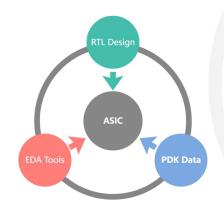
IEEE SSCS Open-Source Ecosystem "Code-a-Chip" Travel Grant Awards at ISSCC'23

List of Accepted Notebooks:

Name	Affiliation	Notebook Title
Yihai Zhang	Tsinghua-Berkeley Shenzhen Institute, Tsinghua University China	GreenRio 2: A Linux-compatible RISC-V Processor Developed with A Fully Open-Source EDA Flow
Anawin Opasatian	University of Tokyo (Japan)	Bernstein-Yang Modular Inversion with XLS/OpenLane
Mauricio Montanares	University of Concepción (Chile)	Sonar On Chip Project
Nealson Li	Georgia Institute of Technology (USA)	Coordinate Rotation Digital Computer (CORDIC) with OpenLane
HyungJoo Park	Hanyang University (South Korea)	Scan Register layout generation using laygo2
Ali Hammoud	University of Michigan (USA)	OpenFASoC: Digital LDO Generator
Nimish Shah	KU Leuven (Belgium)	DPU: DAG Processing Unit for probabilistic ML and sparse matrix algebra

Note: Many thanks everyone for your participation! We recommend to resubmit your Notebooks to the next code-a-chip Notebook competition with revisions. Stay tuned!

The International Solid-State Circuits Conference (ISSCC) 2023 Code-a-Chip Travel Grant Award is created to:


- 1. Promote *reproducible* chip design using *open-source* tools and *notebook-driven* design flows and
- 2. Enable up-and-coming *talents* as well as seasoned *open-source enthusiasts* to travel to the Conference and interact with the leading-edge chip design community.

back

Focus: the gap between open and proprietary EDA tools in terms of quality of results (QoR)

Open-source backend EDA tools

- <u>OpenLane</u>: An automated flow performing full ASIC implementation
- <u>OpenRoad</u>: Enable no-human-in-loop, 24-hour design to remove the barrier to hardware innovation
- Open-source PDK
 - Skywater 130nm (Sky130A & Sky130B)
- Open-source external IP
 - SRAM blocks compiled by OpenRAM
- Open-source silicon production
 - Open Multi Project Wafer (OpenMPW)
 - Efabless Chipignite

RIOS

What is missing?

About the open PDK

1. Sky130A techlef lack cut layer

sky130A techlef lack cut layer		
LAYER poly TYPE MASTERSLICE ; END poly		
LAYER licon1 TYPE CUT ;		
WIDTH 0.17 ;	#	Licon 1
SPACING 0.17 ;	#	Licon 2
ENCLOSURE BELOW 0 0 ;	#	Licon 4
ENCLOSURE ABOVE 0.08 0.08 ;	#	Poly / Met1 4 / Met1 5
END licon1		

2. Open lib is not complete enough

lib in 40C has the richest cases:

(base) [yzhu@server1 lib]\$ls sky130_fd_sc_hd_*_n40C*

 sky130_fd_sc_hd__ff_n40C_1v56.lib
 sky130_fd_sc_hd__ff_n40C_1v95.lib
 sky130_fd_sc_hd__ss_n40C_1v44.lib

 sky130_fd_sc_hd__ff_n40C_1v65.lib
 sky130_fd_sc_hd__ss_n40C_1v28.lib
 sky130_fd_sc_hd__ss_n40C_1v60_ccsnoise.lib

 sky130_fd_sc_hd_ff_n40C_1v76.lib
 sky130_fd_sc_hd__ss_n40C_1v25.lib
 sky130_fd_sc_hd__ss_n40C_1v26.lib

 sky130_fd_sc_hd_ff_n40C_1v76.lib
 sky130_fd_sc_hd_ss_n40C_1v35.lib
 sky130_fd_sc_hd_ss_n40C_1v60.lib

 sky130_fd_sc_hd_ff_n40C_1v95 ccsnoise.lib
 sky130_fd_sc_hd_ss_n40C_1v40.lib
 sky130_fd_sc_hd_ss_n40C_1v76.lib

lib in 25C only has one case

(base) [yzhu@server1 lib]\$ls *25C*
sky130_fd_sc_hd__tt_025C_1v80.lib

- slow lib set for setup time analysis
- fast lib set for hold time analysis

3. Lack capacitance table and qrctech file

- RC scaling factor
- ICT file for em_module

Corresponning to Innovus/ICC's MMMC file:

simultaneously analyzes and optimizes the time sequence of all views, and selectively optimizes the area and power consumption

4. Missing 'pg_pin' on level shifter cells

RIOS What is missing? 1. Complete support for System Verilog RTL Design: **Other Files ASIC EDA Flow** Input lib.lef.etc. src/*sv.v Commercial Tool 2. Logic equivalence check (LEC) & Error checking OpenLane Don't do checking at the last stage **RTL Logic Synthesis** Genus Vetlist and PPA of reference to 'rvj1 caravel soc' in 'top'. (LINK-3) Comparison and Analysis Static Timing Analysis Tempus rror: Width mismatch on port 'meip' of reference to 'core_empty' in 'top'. (LINK-3) Information: Building the design 'llicache_32' instantiated from design 'top' with Design for Test Modus DFT * Smart LEC 3. Engineering Change Order (ECO) Placement and Routing Innvus Adjust the netlist after the RTL is freezing Cross-validation Samrt LEC **RC Extraction** RCX • Only routing stage can use multiple cores Static Timing Analysis Tempus **GDSII** Streaming

Output

Verification

5. Optimation algorithms

4. Multi-thread acceleration

About the toolchain itself

Information: Building the design 'core_empty'. (HDL-193)

the parameters "VIRTUAL_ADDR_LEN=32,WB_DATA_LEN=32". (HDL-193)

Presto compilation completed successfully. (core_empty)

Prevent extensive ip usage

Advanced algorithm integration into OpenEDA better timing/area, higher density,...

fined pa pin is not use

6. Online user guide

TECHLIB-702(20.15) TECHLIB-702 (error) No pg_pin with name '%s' has been read in the cell '%s'. The attribute specified for the %s '%s' is being ignored RIPTION message is issued when the pg_pin specified related_power_pin/related_ground_pin/related_bias_pin does not exist at cell level. These attributes will be ignored. To fix the issue, recharacterize the library with appropriate settings, such that the u

TECHLIB-702(20.15)

11

Comparison and Analysis

GDSII, LEF, Netlist,etc

We utilized the proprietary tools and OpenLane/OpenRoad in the sign-off flow of GreenRio

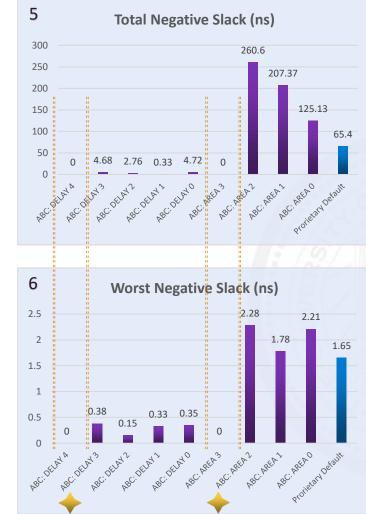
QoR and Runtime

	ogic Synt	hesis	Compar	ison: Ope	n vs	Proprietary	,				
			m/YosysHQ/yosys m/berkeley-abc/abc		E OF ENGTAL 5 HERE NUS esis Solution	Green	Rio 1.0:	Sram	ater 130nm, 80MI n Macro: sky130_s nout mult-core acc	sram_1kbyte_1r	w1r_32x256_8
				SYNTH_STRATEGY	1	Strategies for abc logic synt Possible values are DELAY/A optimization target of the sy the second one is an index. (Default: AREA 0)	REA 0-4/0-3; t nthesis strateg	he first part r	refers to the		
	Tool/Features	Runtime(s)	Synthesis Strategy	Gate Count	Gap	Cell Area (mm ²)	TNS	WNS	Leakage Power (nW)	Internal Power (W)	Clock Gating Optimization
		435	ABC: DELAY 4	50226	1.69	0.57	0.00	0.00	215.00	0.04	1: 1.27
		611	ABC: DELAY 3	53136	1.79	0.60	-4.68	-0.38	217.00	0.05	
		529	ABC: DELAY 2	53982	1.82	0.61	-2.76	-0.15	219.00	0.04	
		544	ABC: DELAY 1	54379	1.83	0.61	-0.33	-0.33	219.00	0.04	
	Open	202	ABC: DELAY 0	52421	1.77	0.60	-4.72	-0.35	217.00	0.04	Null
		219	ABC: AREA 3	61749	2.08	0.63	0.00	0.00	239.00	0.04	
		910	ABC: AREA 2	50626	1.70	0.56	-260.60	-2.28	208.00	0.04	
		685	ABC: AREA 1	50904	1.71	0.56	-207.37	-1.78	210.00	0.04	
fa <u>ult</u>		→ ³³⁴	ABC: AREA 0	48496	1.64	0.54	-125.13	-2.21	208.00	0.04	
	Proprietary	543	SYN_EFF low MAP_EFF low OPT_EFF low	29657	1.00	0.30	-65.40	-1.65	130.82	0.03	Yes (sky130_fd_sc_hd_sdlclkp_1)

RIOS

QoR and Runtime

Logic Synthesis



3 Leakage Power (nW) 300 250 200 150 100 50 0 ABC.DEAYO ABC. AREA 3 ABC: DELAY2 ABC.DELAYA ABCAREA2 ABC. DELAVA ABC. DEAN 3 ABCIAREA ABC.AREAO atam Defait

open > proprietary

RIOS

We utilized the proprietary tools and OpenLane/OpenRoad in the sign-off flow of GreenRio

QoR and Runtime

Project/OpenROAD

Comparison: Open vs Proprietary

GreenRio 1.0: Netlist generated by Yosys

clean gds withou drc/lvs

cādence INNOVUS Technology IMPLEMENTATION SYSTEN (BLOCK) CERTIFIED

• Harden the design with 1 core

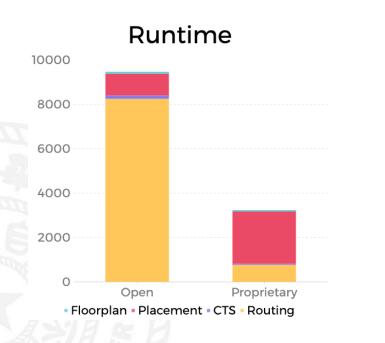
	Stages	Features	Open	Proprietary	[INFO G
	Nec	Core Utiliation	0.35	0.35	[INFO GF ERROR O Given ta
4	Floorplan	Area (mm2)	5.94	5.97	Suggeste Error: g
9		Run Time (s)	93	64	
	Placement	Density	0.6	0.6	
	Flacement	Run Time (s)	385	2365	
5	Clock Tree Synthesis	Run Time (s)	149	48	
6	Routing	Wire Length (um)	3432810	2601926	Gap: 0.75
2	in the second se	Run time (s)	8253	763	
>	Total Runtir	ne (h:min:s)	2:41:40	1:37:07	- Hig

• Route with 8 cores

١	Open	Proprietary	K
Routing Time (s)	983 (x0.12)	127(x0.17)	
		OpenRoad has potenti	al in mult-thread acceleration

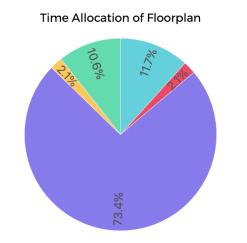
- Do floorplan with higher utilation → can't fit all the cells

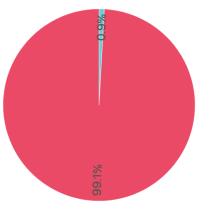
		0				
[INFO GPL-0020] [INFO GPL-0021] [ERROR GPL-0302] Given target den Suggested target Error: global_pl	MacroInstsArea Use a higher sity: 0.60 density: 0.70	a: 1528626000 -density or 0	000 re-floorplan	with a larger o	core area.	


λ	Proprietary
Core Utiliation	<mark>0.5</mark>
Area (mm²)	4.18
Placement Time (s)	3195
Routing Time (s)	1558

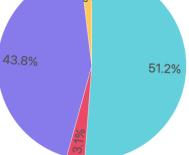
- Higher density will easily lead to routing congestion

[INFO GRT-0111] Final number of vias: 214085 [INFO GRT-0112] Final usage 3D: 1023424 [ERROR GRT-0118] Routing congestion too high. Error: groute.tcl, 69 GRT-0118


RIOS


From proprietary tools:

A scientific placement may lead to easiler routing convergence


Check Step • IO Planning • Macro Placement • Tap/Well Cells • PDN

Time Allocation of Routing

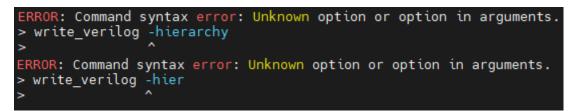
Runtime

Global Placement • IO Placement • Resizing & Buffering
 Detail Placement

For open tools:

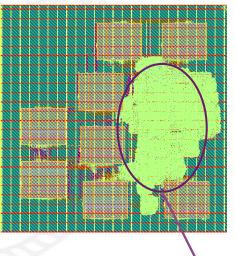
- Routing is the most time-consuming task

- Spend a lot of time on detail routing (TritonRoute)

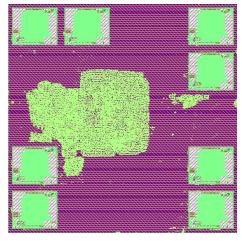

The-OpenROAD-Project / TritonRoute Code O Issues 11 Pull requests O Act		⊙ Wate
	P master -	
	Commits on Nov 24, 2020 Merge pull request #5 from The-OpenROAD-Project-private/ispd-pipeline	
	Weige puin request ≪ nonini me-operino/ou-v-loject-private/rspd-pipeline Immi ⊗ wbandeira committed on Nov 24, 2020 ✓	

- Determining the location of macro also costs much

RIOS

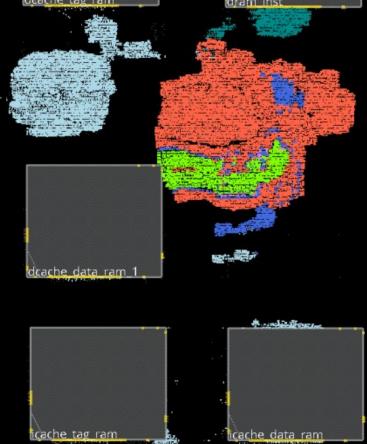

Other Comparisons

- Netlists don't contain module's hierarchical information

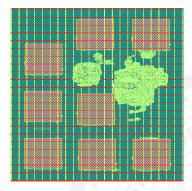


- Different macro placement

GDS generated by Innovus



GDS generated by OpenRoad


what happens here?

- Design brower use the netlist generated by Compiler

(with hierarchical modules)

Nonblocking cache CPU_backend CPU_frontend CSR SOC

back

Design Space Exploration in RISC-V Chips and OpenEDA

• The design complexity of GreenRio has revealed the **convergence difficulty** in the Open-Chip flow

For Better area and timing and shorter wirelength

Integrate Flowtune^[1] into OpenRoad

8.26.2. Analyzing design hierarchy..

8.27. Printing statistics.

8.28. Executing CHECK pass (checking for obvious problems).

ENTERING FLOWTUNE PROCESS

9. Executing BLIF backend.

10. Executing BLIF frontend.

- 11. Executing OPT pass (performing simple optimizations).
- 11.1. Executing OPT_EXPR pass (perform const folding).

Through this process, we also found the ASAP-7nm PDK is not complete enough

abc 01> read /workspace/0penROAD-flow
scripts/flow/results/asap7/gcd/base/output.blif
Line 10: Cannot find gate "DFFHQNx1_ASAP7_75t_R" in
the library. Reading network from file has failed.

For better user experience, especially for beginners:

Bulid a solution-inspiring error log system

- Eg1 : fail in detail placement

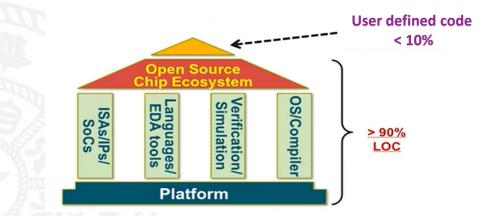
[INFO DPL-0035] 399 [ERROR DPL-0035] Detailed placement failed.Maybe increasing the diea area or placement density,or changing placement strategy can solve this problem. Error: detail_place.tcl, 10 DPL-0036 Command exited with non-zero status 1 Elapsed time: 0:09.70[h:]min:sec. CPU time: user 9.67 sys 0.02 (99%). Peak memory: 101656KB.

- Eg2 : fail in global routing

[INFO GRT-0101] Running extra iterations to remove overflow. [INFO GRT-0103] Extra Run for hard benchmark. [INFO GRT-0197] Via related to pin nodes: 1080 [INFO GRT-0198] Via related Steiner nodes: 57 [INFO GRT-0199] Via filling finished. [INFO GRT-0111] Final number of vias: 2425 [INFO GRT-0112] Final usage 30: 13527 [ERROR GRT-0118] Routing congestion too high. Decrease placement density or reduce bus widths maybe work. For more infomation, check the congestion heatmap ;RT-0118

Excellent Efford Award in OpenRoad 7nm Contest

Design Space Exploration in RISC-V Chips and OpenEDA


• Optimize OpenEDA along with RISC-V Chips together

Complex Design ----> Boundary of tools

More advanced toolchain ----> Designs with more features

- Accelerate the customized chip development
- Leverage the power of open-source community
- Push the frontiers of hardware innovation

In future...

OpenEDA RISC

- Keep iterating GreenRio; Keep narrowing the gap between open and properitary backend softwares
- AI based ASIC
 - advanced algorithms
 - open-source data-set for RISC-V VLSI CAD

Thank you