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Abstract

This paper presents control-flow and code execution integrity solutions for programs running on RISC-V cores.
Our solutions are based on the RISC-V Trace Encoder (TE) that provides information about the execution path
of the user’s program. A first approach is compliant with the RISC-V TE standard. It detects instruction skip
attacks on function calls and their returns and, attacks on branch instructions. A second approach implies an
evolution of the TE specifications that permits to detect more complex fault models as the corruption of any
discontinuity instruction. It covers more security properties as the program execution integrity. Our TE-based

solutions were implemented on an IBEX RISC-V core and have efficiently detected simulated and experimental
Fault Injection Attacks (FIA). Our verification systems do not modify the RISC-V Instruction Set Architecture

(ISA), the compilation process or the user code.

Introduction

Control-Flow Integrity (CFI) [1] verification schemes
are used to verify that a program is correctly executed
during runtime and not altered by software or hard-
ware attacks. It checks that its execution follows a
path known to be correct in the application Control
Flow Graph (CFG). In our research, we exploit the
features of the Trace Encoder (TE) to verify the CFI
of a program on a RISC-V core. Two approaches are
proposed. One is consistent with the RISC-V TE stan-
dard [2] covering partially the CFI. The second implies
an evolution of the TE — thanks to its open-source spec-
ifications — detecting more complex fault models and
covering the program CFI. Based on the enhanced TE,
we designed a Code and Control-Flow Integrity (CCFI)
solution verifying the integrity of the executed code till
the Instruction Fetch stage of a RISC-V core. However,
the state-of-the-art has shown that a fault can also be
injected into any micro-architectural block affecting
the program execution [3]. Therefore, we developed
a Control-Flow and Execution Integrity (CFEI) ap-
proach verifying the microarchitectural control signals
to guarantee the program’s correct execution.

Trace Encoder

The RISC-V TE [2] is an execution flow tracer that
compresses at runtime the sequence of discontinuity
instructions executed by the RISC-V core into trace
packets. These packets sent to a debug tool allow
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developers to check the path followed by the program.
By having access to the program binary, developers
can reconstruct the program flow as depicted in Fig-
ure 1 (top). A packet defined by the TE standard
[2] contains information about the path followed by
the program since the last emitted packet. It is sent
after fulfilling one of the TE seven conditions [2]| (for
example, after executing an uninferable discontinuity
— return instruction). The TE alone is used for de-
bugging purposes and allows neither CFI, CCFI nor
CFEI verification.

TE-based solutions

Figure 1 (bottom) shows the Trace Verifier (TV) —
the core of our TE-based solutions. It verifies the co-
herence between the program’s executed path and the
expected path based on its CFG. The TV compares
TE packet contents with CFG metadata generated
from our static analysis program. The metadata de-
fined by all discontinuity instructions with their ad-
dresses and the addresses of subsequent discontinuities
are stored in the TV memory. The TV based on the
TE standard detects instruction skip attacks on func-
tion calls, on their returns and on branch instructions
(by having a Shadow Stack in the TV and accessing
the TE 32-bit instruction bus).

The TE standard enhancement consists in sending
a packet after each discontinuity instruction, and not
only by meeting the seven conditions of the actual
standard [2]. Thus, the packet verification latency is
decreased. With this solution TV-CFI, corruption of
any discontinuity instruction is additionally covered
by comparing the executed discontinuity to the one
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Figure 1: A schematic of the RISC-V + TE (top) and verification solution (bottom)

stored in the metadata. Additional signature compu-
tation modules could be added to generate signatures
of Basic Block (BB) instructions or pipeline signals
(cf. Figure 1). A signature sent to the TV via a
dedicated TE packet permits CCFI or CFEI veri-
fication (expected signatures are stored in the TV
memory). We implemented our solutions on an IBEX,
a 32-bit RISC-V core with a 2-stage pipeline, and
reported their efficiency against simulated Fault Injec-
tion Attacks (FIA) on "Embench-IOT" benchmarks
and against experimental FIA using Electromagnetic
(EM) pulses on a FPGA board. Table 1 shows the av-
erage overhead costs of our solutions. The TV-CFEI
dedicated memory is the largest storing signatures of
BB pipeline signals for the maximum coverage.

Discussion

Our solutions could be implemented to other RISC-V
cores compatible with the TE. The study of the tar-
geted architecture is required for signature calculation
(instructions or control signals). The standard enhance-
ment is done while respecting the retro-compatibility
of the TE. It can run in a normal [2], CFI, CCFI or
CFEI mode. Indirect calls destinations which cannot
be known from the static analysis are not covered. A
perspective is to avoid these calls by modifying the
user code or the compiler. Moreover, the designer may

Table 1: TE-based solutions average overhead costs.

Code Size (%)
Performance (%)
Hardware Area (%) | 15,9 | 17,2 | 27,9 | 35,1
TV Memory Size (%) | 4,29 | 4,29 | 6,25 | 7,81

o|o| TV-CFI
o|o| TV-CCFI

o|o| TV
o|o| TV-CFEI

need to just cover a sensitive section of the code (e.g.
authentication function). It could be done by using
the TE filter (cf. Chapter 5 of the TE standard [2]). It
specifies the lower and higher addresses where packets
need to be generated. Activating this functionality
reduces drastically static data size and TV memory
cost. In our core implementation, the branch predic-
tion feature was disabled. Enabling this option emits
a specific packet after a discontinuity instruction with
content defined by the TE standard. The TV could
be enhanced to operate in this mode.

Conclusion

This paper proposes control-flow verification systems
for programs executed on a RISC-V core. These so-
lutions are based on the RISC-V Trace Encoder, a
debug feature that allows to capture the execution
path of a program. We developed a solution follow-
ing the TE standard where skip attacks on function
calls and returns are detected. We also proposed an
enhancement to the standard for detecting more com-
plex fault models as the corruption of any executed
instruction. Solutions were experimented on an IBEX
core both in simulation and under EM FIA. Our coun-
termeasures do not generate performance overheads.
They do not modify the RISC-V ISA, compiler or the
user code. Only hardware overheads are reported. In
our future work, we aim to enhance our solutions to
handle interruptions and core exceptions.
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