
RISC-V Summit Europe, Barcelona, 5-9th June 2023 1

Software Hardware Co-processing in RISC-V using
OpenVX™ for Embedded Vision Applications

Balaji Chegu, Prakash Reddy Battu, Yogesh Agrawal and Arun Naik

Microchip Technology India Pvt. Ltd.

Abstract

The complexity of computation logic in embedded vision applications is on the rise due to increase in video
resolutions and image quality requirements. There are many frameworks that support acceleration of
embedded vision applications, such as OpenVX™ [1]. It is a royalty-free cross platform framework using
connected graph representation of operations In OpenVX™, image operations are expressed as graph of
nodes, where nodes can be run on hardware or software. Typically, the run functions of the computationally
complex nodes can be optimized in specialized hardware logic like FPGA to achieve acceleration and thus
better FPS (frame per second). The graph is represented in C/C++ and is hosted on OS like Linux. This paper
explains the acceleration of 2D convolution as OpenVX™ run functions using a Generic Matrix Multiplier
(GMM) implemented in FPGA logic and summarizes the benefits of the proposed architecture by comparing
the execution times and frame rates with and without FPGA acceleration.

Introduction

Embedded vision solutions in general can be developed
on various platforms like CPU, ASIC or FPGA. CPU based
software solutions are highly configurable as the function
modules can be re-written for any change in requirement
and can be developed in a less amount of time. But the
acceleration in CPU is limited by its instruction set
architecture (ISA) and number of cores. FPGA logic can
give good acceleration by increasing the number of logic
gates but can be reconfigured only by reprogramming. This
is a time-consuming development cycle. Recently FPGA
SoC (System on Chip) s architectures are gaining traction
where some computing can be offloaded to the processor
and some to the fabric to get the best of both worlds.

The concept of software-hardware coprocessing has been

used for many years and the architectures have been
evolving. Real time system with hardware-software co-
design using Xilinx’s ZedBoard are demonstrated in [2]. A
convolution coprocessor developed in FPGA handles the
image processing algorithms like 2D filtering. The role of
the software in their system is confined to image
acquisition via V4L2 and controlling the modules.

A System C based approach for software-hardware

architecture based codesign methodology is demonstrated
in [3]. System-C provides well defined set of C++ classes
for flexible description of hardware. It also supports
partitioning of image processing between hardware and
software. However, this is useful for new designs where the
developer must use System-C and the image processing
platforms such as OpenVX™ are not directly compatible
with this approach. An interesting mixed system is
experimented in [4] where FPGAs and DSPs are connected

via fast serial link. The DSPs take the floating-point
computation load while the FPGAs provide fast I/O.

In this paper we demonstrate a novel method of wrapping

a Register Transfer Logic (RTL) IP in C code that could be
used in a software framework like OpenVX™ making it to
work like a software library with other software modules.
As a proof-of-concept Sobel edge detector on a live camera
resolution of 720p where time consuming gradient
calculation nodes are handled in Fabric, while L1 norm on
the RISC-V processor is implemented.

Implementation

Hardware and Software Details

PolarFire® SoC FPGA SEV Kit [5] features a full
pledged multimedia development kit with MPFS250T
PolarFire® SoC and interfaces like CSI-2, HDMI etc. The
SoC combines 4 RISC-V U54 application cores for a
Microprocessor Subsystem (MSS) that can run Linux® and
the PolarFire® fabric in a single device.

The MSS contains 4 Fabric Interconnects (FIC) that are

used to communicate with fabric. The FICs support
protocols like AXI and APB. It can host an Embedded
Linux® built on Yocto Project® built system with feature
rich libraries like libpthread, libgpiod and other necessary
drivers. A new recipe for OpenVX™ is written for Yocto®
and thus making it available in the user libraries.

Hardware-Software Interactions

An RTL IP called Generic Matrix Multiplier (GMM) that
can do four 2D convolutions in parallel is designed. The
GMM is used to calculate horizontal and vertical gradients
for Sobel edge detection. The FPGA resource count for the

2 RISC-V Summit Europe, Barcelona, 5-9th June 2023

IP is – 4K 4LUTs, 3K DFFs, 20 LSRAM 18K and 20 Math
18x18 blocks on MPFS250T FPGA.

To mimic a software function call to the GMM, it is

equipped with the following control logic.
1. Parameter configuration: Input and output

addresses, convolution coefficients are passed
through APB interface. The APB is a memory
mapped region which can be accessed through
devmem from Linux user space.

2. Control logic: The MSS triggers a GPIO
whenever the data needs to be processed and
gets an acknowledgement in other GPIO. A
userspace library called libgpiod is used for this
purpose.

3. Data transfers: The data transfers between
cached (DDR-C) and non-cached (DDR-NC)
regions are done using PDMA (platform direct
memory access). Fabric computations are
efficient in DDR-NC region and the MSS i.e.,
RISC-V processor’s computations are efficient
in DDR-C. So, the data needs to be moved
appropriately and PDMA helps in these memory
transfers.

Fig 1: MSS and GMM interface

GMM as OpenVX™ Node

Any function with well-defined C interface can be a run
function to a user defined node in OpenVX™ framework.
Conv2D user kernel with appropriate input/output
validators and GMM as run function is coded in C. This is
built on Yocto and the user node from this kernel is
registered for the OpenVX™ graph. The following figure
shows the nodes in Sobel graph. The Conv2D node
executes in the fabric and L1 Norm in RISC-V
demonstrating a hardware-software co-processing.

Fig 2: Sobel edge detector graph running in
RISC-V with fabric coprocessing.

1. YUV Image in, YUV Image out: Memory
mapped region in DDR-NC. It can be accessed
by Fabric thru the physical address. OpenVX™
can manage this thru APIs like
vxCreateImageFromHandle.

2. Conv2D – A user defined node with GMM
running in fabric as run function. Computes
gradient and transfers the output to DDR-C
region for the MSS to consume.

3. L1 Norm – Another user defined node that
completely runs on RISC-V.

4. Gradient X, Y: Memory mapped regions in
DDR-C which are accessed by RISC-V.

Results

For HD (1280x720) resolution image the GMM takes
about 9 msec to perform 2D convolution whereas the same
in software i.e., in C it takes about 30 msec using 4 threads.
The L1 norm which is run in C takes about 15 msec. The
node execution is in sequence i.e., first the Gradient X is
calculated, then Gradient Y and at last L1 Norm. Hence the
overall Sobel magnitude takes 33 msec (9+9+15) when the
2D convolution is performed using GMM and takes 75
msec (30+30+15) when the 2D convolution is performed in
C.

Configuration Time taken in
msec

FPS

Without SW-HW
coprocessing

75 13

With SW-HW
coprocessing

33 30

Conclusion

A novel method of prototyping an algorithm in C using
OpenVX™ and later accelerating the needed portions in
FPGA using a GMM is presented in this paper. An
unconventional approach of giving a C interface to fabric
IP (GMM) and integrating it into OpenVX™ framework is
realized. This facilitates the reuse of FPGA IPs very
identical to user space C libraries.

Complex use cases like stereo vision are better suitable
for this approach. For instance, the disparity estimation
which involves lot of bitwise operations can be done in
fabric and other computations on the processor.

References

[1] https://www.khronos.org/openvx/.
[2] M. Ali Altuncu, Taner Guven, Yasar Becerikli, Suhap

Sahin, “Real-time system implementation for image
processing with hardware/software co-design on the Xilinx
Zynq platform”, IJIEE, November 2015, 473-477.

[3] Wang Chong, et.al., "Hardware/software co-design of
embedded image processing system using systemc
modeling platform," 2011 International Conference on
Image Analysis and Signal Processing, 2011, pp. 524-528

[4] Adler, Felix et.al., “A new versatile hardware
platform for digital real-time simulation: Verification and
evaluation”, 2012 IEEE 13th Workshop on COMPEL.

[5] https://www.microchip.com/en-us/development-
tool/MPFS250-VIDEO-KIT

