
RISC-V Summit Europe, Barcelona, 5-9th June 2023 1

Introducing Em –
Taking RISC-V Software Over The Edge

Bob Frankel*

Co-Founder and CTO, Bespoke IoT

Abstract
The Em programming language elevates embedded firmware development to a higher-level which has histori-
cally eluded C. Originally conceived in the 2009-2010 timeframe, Em has evolved over the last decade through
a series of commercial deployments in low-power, low-cost wireless IoT applications. Thanks to novel optimiza-
tion techniques employed by the underlying language translator, Em programs would invariably out-perform
their hand-crafted C counterparts in terms of time and (especially) space.

Initial engagement with RISC-V began last year through Em support for two development boards used for edge-
processing. With tenfold reductions in program footprint not uncommon, opportunities abound to target small
RISC-V MCUs and SoCs with less than 32K of memory – pushing conventional edge-processing designs to the
IoT fringe in terms of silicon size and power consumption.

Beyond C
The Em programming language – expressly designed

for 8/16/32-bit MCUs with very little memory – elevates em-
bedded firmware development to a higher-level which has
historically eluded C (or even C++). C continues to this day
as the dominant programming language for deeply-embed-
ded MCUs in general, as well as for memory-constrained
RV32I-compliant RISC-V cores in particular – a testimony
to the staying power of the C language over the past fifty
years.

Originally conceived in the 2009-2010 timeframe at UC
Santa Barbara [1], Em enabled undergraduate EE students
(using this primer [2] for reference) to implement low-level
MCU firmware using modern programming constructs such
as interface inheritance and component composition. Re-
markably, we found that higher-level programming did not
necessarily lead to higher-levels of program overhead.
Thanks to novel optimization techniques employed by the
underlying language translator, Em programs would invari-
ably outperform their hand-crafted C counterparts in terms
of time and (especially) space.

From its baseline implementation within academia, the
Em language and its growing library of runtime components
(written in Em, of course!) has subsequently evolved and
matured through a series of deployments in commercial IoT
applications executing on low-cost, low-power hardware:

2011-2015 — a BLE stack running on 8-bit MCUs, licensed
to early manufacturers of mobile-controlled “things”;

2015-2019 — tracking individual point-of-purchase displays
situated within stores operated by major retail chains; and

* Corresponding author : bob@biosbob.biz

2019-2022 — collaboration with a large silicon vendor tar-
geting cost-constrained designs for their wireless MCUs.

With application volumes projected as high as 100M
units/year, the Em language played a critical role in keeping
BOM costs in check as well as extending battery-life in these
systems. Through its innate ability to reduce overall program
size – sometimes tenfold – Em has allowed us to target
lower-cost MCUs with less flash/SRAM. Smaller programs
will also tend to perform the same functions in fewer instruc-
tions, enabling more time for deep-sleep and/or a slower pro-
cessor clock – saving energy all around.

As of today, the Em language runtime has found its way
onto more than twenty 8/16/32-bit MCUs from almost a
dozen different silicon vendors. The Em language translator,
which ultimately outputs ANSI C/C++ code for portability,
has also targeted the most popular toolchains for embedded
development (GCC, IAR, Keil, LLVM). Thanks to a recent
rewrite of the translator into TypeScript, Em now enjoys ro-
bust language support within the VSCode IDE.

More important, perhaps, less than a handful of Em pro-
grammers have developed thousands of Em modules used
(and often re-used!) across a broad range of IoT applications
targeting resource-constrained MCUs. Due to the proprie-
tary nature of these applications, however, the Em language
and its runtime has remained closed – until now.

RISC-V Opportunities
Initial engagement with the RISC-V ecosystem began

last year through Em support for two popular development
boards used in edge-processing applications.

SiFive HiFive1 — As part of a RISC-V initiative at Rice
University [3], several students became familiar with the Em

2 RISC-V Summit Europe, Barcelona, 5-9th June 2023

programming language environment. These students also
evaluated the Em runtime against the Freedom Metal library
supplied by SiFive, finding that the latter’s well-structured,
object-oriented design in fact led to a tenfold increase in run-
time footprint versus Em.

OpenISA RV32M1 (VEGAboard) — Designed and man-
ufactured by NXP, Em support for the RV32M1’s ZERO-
RISCY and Cortex-M0+ CPUs has enabled meaningful side-
by-side benchmarks (time, space, power) using a common
set of on-chip memories and I/O devices – including a
highly-configurable, multi-protocol 2.4 GHz radio used in
other NXP parts. Using only this radio’s low-level FSK
PHY, the author demonstrated a minimal (yet compliant)
Em-based BLE stack that executes in under 8K of SRAM;
by contrast, NXP’s own BLE stack consumes ~200K of
RV32M1 memory and requires extensive link-layer support
from the radio hardware.

While “resource-constrained” when compared with the
cloud or even mobile devices, the MCUs used on these edge-
processing boards have generous amounts of cached pro-
gram flash as well as tightly-coupled SRAM data blocks.
Non-trivial applications for these MCUs will usually have
memory footprints measured in the hundreds of kilobytes.

By contrast, real-world IoT applications written in Em
will typically execute in under 32K of memory – including
a rudimentary task scheduler, drivers for all system periph-
erals, and a low-power wireless communication stack. This
significant disparity in overall program size in turn leads us
to frame a more fundamental question:

If programming in Em can reduce software footprint by
10X, why not pursue similar economies in the silicon?

Edge-processor roadmaps from leading chip manufac-
turers currently feature more (not less) hardware – larger
memories, multiple CPUs, complex peripherals. Perhaps we
can now leap “over-the-edge” and explore a new category of
minimalist MCUs “on-the-fringe” of the IoT hierarchy.

The RISC-V community offers a wide-range of proces-
sor cores, including several entry-level offerings [4, 5] that
benchmark favorably against ARM Cortex-M0. Pushing the
envelope even further, minimalistic CPUs [6, 7] that today
target small FPGAs could eventually supplant 8-bit MCUs
currently entrenched at the IoT fringe. The “tiny-code” pro-
duced by programming in Em would further amplify the im-
pact of these tiny RISC-V cores on overall system perfor-
mance.

By virtue of their small silicon footprint, MCUs and
SoCs built around these tiny RISC-V cores could potentially
consume much less power than devices featuring (for exam-
ple) a Cortex-M0 CPU. Results reported by Schiavone [8]
encourage further exploration in this direction.

The “openness” of the RISC-V technology also encour-
ages the design of tailor-made cores for specific application

domains – such as implementing ultra-low power wireless
DSP extensions for software-defined radio transceivers [9].
Orthogonal to these silicon improvements, writing digital
baseband software in Em can only help the cause.

Next Steps
Logging more than a decade of real-world usage within

resource-constrained embedded applications – plus some re-
cent penetration into the RISC-V community – perhaps the
time has finally come to open-source the Em programming
language and its runtime. As Em enters its fifth-generation
since inception, a provisionally named Em-V project would
make the language broadly available, not only supporting
RISC-V platforms but alternative 8/16/32-bit MCUs as well.

Easier said than done, however! Short of simply posting
source code to a public GitHub repository, the author seeks
guidance from the RISC-V community on how to best or-
ganize and operate the Em-V project to maximize its impact.

In the meanwhile, Em will continue to push the tiny-
code-for-tiny-chips envelope – by working with active pro-
jects such as NEORV32[10] and X-HEEP [11], whose de-
signs could potentially bring RISC-V closer to the fringe of
low-power MCUs. With an ASIC forthcoming, X-HEEP
could also provide an ideal platform to demonstrate the po-
tential of Em – and to start moving deeply-embedded soft-
ware beyond C.

References
[1] A. Amar. Support for Resource Constrained Micro-

controller Programming by a Broad Developer Com-
munity. Doctoral thesis, UC Santa Barbara, 2010.
tinyurl.com/yxd8s3tr.

[2] Introducing Em (UC Santa Barbara, 2010).
 tinyurl.com/bdftm8yu.`
[3] R. Simar. RVR (Risc-V at Rice) Lab.

tinyurl.com/bp8dz6a7.
[4] OpenHW Group. CORE-V CVE2 RISC-V IP.

tinyurl.com/33hycpfj.
[5] SiFive. E2 Core IP Series.

tinyurl.com/b4tns3fz.
[6] O. Kindgren. SERV – The SErial RISC-V CPU.

tinyurl.com/4pmt4v5d.
[7] B. Levy. FEMTORV32 / FEMTOSOC: a minimalistic

RISC-V CPU. tinyurl.com/34zxyjmx.
[8] D. Schiavone. Design of energy-efficient RISC-V based

edge-computing devices. Doctoral Thesis, ETH Zurich,
2020. doi.org/10.3929/ethz-b-000463184.

[9] H Amor. A RISC-V ISA Extension for Ultra-Low Power
IoT Wireless Signal Processing. tinyurl.com/bdhty2f4.

[10] S. Nolting. NEORV32.
https://tinyurl.com/57y2m82j

[11] ESL/EPFL. X-HEEP (eXtendable Heterogeneous En-
ergy-Efficient Platform). tinyurl.com/2mbjzxd5

