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Abstract 

System Reliability, Availability and Serviceability (RAS) are major properties in any High Performance 

Computing systems. An essential feature to improve RAS is represented by facilities to log hardware errors 

information and report it to system software. We present here the main characteristics of a HW-SW interface 

that we have developed to improve RAS of RISC-V architectures. We describe the main building blocks of the 

proposed peripheral that can be adopted in both 32- and 64-bit RISC-V architectures, their main 

characteristics, and the set of registers that are used to log and report main error information. Finally, an 

FPGA-based test platform developed to validate the proposed RAS peripheral is briefly discussed. 

Introduction 

The reliability, availability and serviceability (RAS) of a 

computing system can be increased with low impact on  

performance and cost through the addition of information 

and control path redundancy along with dedicated error-

checking hardware [1]. If errors can be detected and 

corrected by error checking hardware, system operation can 

continue without any noticeable loss in performance [1].  

Additionally, error containment limits the propagation of 

an erroneous data. This enhances system availability by 

limiting the effects of errors to a subset of software or 

hardware resources. System software may either correct the 

error and resume the interrupted program or terminate 

software processes that cannot continue due to the error. 

Error logging and reporting enhances RAS by providing 

information that is used by the software to identify 

erroneous blocks [2, 3, 4]. Consequently a hardware-

software (HW-SW) interface for error logging and 

reporting is essential to improve RAS of a computing 

system. It defines the facilities by which hardware errors 

are logged and reported to system software using several 

banks of registers to record error information. This way 

system software can take actions to recover from and 

diagnose hardware errors. Therefore, the combination of 

hardware error detection and correction together with a 

HW-SW interface for error logging and reporting is 

mandatory to improve the RAS of a computing system.  

So far, no HW-SW interface for RAS has been developed 

for RISC-V processors. RISC-V community has 

established RERI (RAS Error-record Register Interface) 

task group [5] that is in charge of identifying the main 

features to be implemented by such RAS interface. To fill 

this gap, within the European Processor Initiative (EPI 

SGA2),  we have developed and implemented a HW-SW 

interface for error logging and reporting (RAS Peripheral) 

to be adopted in future HPC systems based on RISC-V 

processors. The RAS Peripheral has been developed by 

using System Verilog, synthesized with a 7 nm standard 

cell library for area occupation evaluation, and finally 

implemented in a FPGA-based test platform for verification 

and validation. All main features have been tested for and 

the provision of the expected services has been verified. 

Developed RAS Peripheral 

The developed RAS Peripheral has been designed 

according to the following error classification criteria.  

• Corrected Errors (CEs), which includes errors that are 

detected and corrected by hardware.  

• Deferred Errors (DEs), including detected uncorrected 

errors that have no immediate impact on the operation 

of the system. Operation can continue and dealing with 

the error is deferred to a later point in time if the 

corrupted data are consumed. 

• Urgent Errors (UEs), consisting of detected errors that 

require immediate action from system software.  

A high-level block description of the architecture of the 

developed RAS peripheral is depicted in Figure 1. It 

comprises the following main building blocks. 

The Error Mux receives the error control signals 

generated by the error-checking circuitry of the monitored 

blocks and generates an error message comprising a Source 

ID, which identifies the block generating the error, and 

Error Type (either CE, or UE, or DE).  

The FIFO Buffer, a circular buffer including the 

Synchronization Buffers, which stores the error messages 

from the Error Mux and pair them with the address of the 

erroneous location coming from the Address Buffer. 

The Main Controller, which selects the register bank 

where to locate a new error record. For efficiency purposes, 

it adopts a fully associative cache-like approach, selecting 

the first free bank that it finds. In case all banks are 

occupied by valid error records, it may overwrite one of 

them or discard the new error record and keep the older 

ones, according to the following hierarchy: UE > DE > CE. 
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The DE Controller handles the indication of deferred 

errors. To perform its task, the read/write signal is also 

necessary. Indeed, if a memory location storing data with a 

DE is accessed during a read operation, this poisonous data 

are going to be consumed. Therefore, the DE needs to be 

escalated to an urgent error UE. Instead, tracking a write 

operation to a location with a deferred error allows us to 

invalidate the corresponding error record, since in this case 

old data are going to be overwritten by new ones. 

In the Error Record Banks, there are the following 64-

bit registers to store all necessary information on errors. 

Feature Register, which defines the main characteristics 

of the RAS interface and is configured at implementation 

stage. As an example, it specifies the type of errors that are 

logged (CE, DE, UE), whether the counter for corrected 

errors is implemented or not, if the timestamp is stored, 

kind of errors generating an interrupt, etc. 

Control Register stores a set of enable signals for the 

different features (for instance, if the error reporting is 

enabled, for which cases the interrupt is enabled, etc). It 

can be modified at runtime. 

Status Register stores information on the error, that is the 

error message, or error syndrome, and some valid bits 

related to the address and miscellaneous registers, if a 

corrected error counter overflow is implemented, or 

whether the error record has been overwritten. 

Address Register stores the address of the erroneous data. 

Two Miscellaneous Registers, which store additional 

information about the logged error. Its timestamp is also 

stored in this register. 

Finally, the Interrupt Generator (IRQ Gen) is in charge 

of generating the interrupt signal in different scenarios,  

depending on the features of the RAS Peripheral chosen at 

implementation time (included in the Feature Register). 

Table 1: Area occupation for 7nm standard cell. 
Peripheral 

Blocks 

Area (µm2) Gate Equivalent 

Comb Seq Tot Comb Seq Tot 

Err. Mux 3.52 4.84 8.36 45833 63021 108854 

Synch. Buff. 0.17 27.42 27.59 2214 357031 359245 

FIFO Buff. 73.78 79.49 153.27 960677 1035026 1995703 

Err. Rec. Banks 60.85 87.97 148.82 792318 1145442 1937760 

Controllers 86.48 3.88 90.36 1126042 50520 1176562 

IRQ Gen. 1.94 0.40 2.34 25260 5209 30469 

In order to evaluate area overhead of the developed RAS 

peripheral, we have synthesized it with a 7 nm standard cell 

technology. As an example, we have considered two 

register banks. Table 1 reports the area occupation figures. 

 

FPGA-based Test Platform Implementation 

The RAS Peripheral developed has been implemented 

and prototyped to verify and validate its behavior using an  

FPGA board Xilinx Zynq ZCU104. Figure 2 shows the 

structure of the prototype developed for testing purposes. 

All blocks are accessed via memory mapping, and AXI4 

communication protocol is implemented. The RISC-V 

processor is a CV32E40P core, a 4-stage in-order 32-bit 

RISC-V processor that implements RV32IMFC ISA [6]. It 

is worth noting that the developed RAS Peripheral can be 

also adopted with 64-bit RISC-V processors. The 

implemented test platform includes a UART  interface that 

is used to print on terminal, and a JTAG for code loading 

on Main Block RAM (BRAM), which is also used for data. 

Central Direct Memory Access (CDMA) soft Xilinx IP 

core is used for memory-to-memory transfers between 

second and third Block RAMs. These two memory blocks 

implement a SEC-DED ECC for single error correction and 

double error detection, allowing us to identify whether the 

block transferred includes any memory location with 

erroneous data. It is worth noting that ECC circuitry and 

fault-injection ability for Block RAMs is provided by 

Vivado. All performed tests have confirmed the correct 

behavior of the developed RAS Peripheral. 
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Figure 2. Test prototype for RAS Peripheral validation. 
Figure 1. Architecture of the developed RAS peripheral.  
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