

RISC-V Summit Europe, Barcelona, 5-9th June 2023 1

HW-SW Interface for RAS in RISC-V Architectures
Daniele Rossi*, Nicasio Canino, Stefano Di Matteo and Sergio Saponara

Department of Information Engineering, University of Pisa, Italy

.

Abstract

System Reliability, Availability and Serviceability (RAS) are major properties in any High Performance

Computing systems. An essential feature to improve RAS is represented by facilities to log hardware errors

information and report it to system software. We present here the main characteristics of a HW-SW interface

that we have developed to improve RAS of RISC-V architectures. We describe the main building blocks of the

proposed peripheral that can be adopted in both 32- and 64-bit RISC-V architectures, their main

characteristics, and the set of registers that are used to log and report main error information. Finally, an

FPGA-based test platform developed to validate the proposed RAS peripheral is briefly discussed.

Introduction

The reliability, availability and serviceability (RAS) of a

computing system can be increased with low impact on

performance and cost through the addition of information

and control path redundancy along with dedicated error-

checking hardware [1]. If errors can be detected and

corrected by error checking hardware, system operation can

continue without any noticeable loss in performance [1].

Additionally, error containment limits the propagation of

an erroneous data. This enhances system availability by

limiting the effects of errors to a subset of software or

hardware resources. System software may either correct the

error and resume the interrupted program or terminate

software processes that cannot continue due to the error.

Error logging and reporting enhances RAS by providing

information that is used by the software to identify

erroneous blocks [2, 3, 4]. Consequently a hardware-

software (HW-SW) interface for error logging and

reporting is essential to improve RAS of a computing

system. It defines the facilities by which hardware errors

are logged and reported to system software using several

banks of registers to record error information. This way

system software can take actions to recover from and

diagnose hardware errors. Therefore, the combination of

hardware error detection and correction together with a

HW-SW interface for error logging and reporting is

mandatory to improve the RAS of a computing system.

So far, no HW-SW interface for RAS has been developed

for RISC-V processors. RISC-V community has

established RERI (RAS Error-record Register Interface)

task group [5] that is in charge of identifying the main

features to be implemented by such RAS interface. To fill

this gap, within the European Processor Initiative (EPI

SGA2), we have developed and implemented a HW-SW

interface for error logging and reporting (RAS Peripheral)

to be adopted in future HPC systems based on RISC-V

processors. The RAS Peripheral has been developed by

using System Verilog, synthesized with a 7 nm standard

cell library for area occupation evaluation, and finally

implemented in a FPGA-based test platform for verification

and validation. All main features have been tested for and

the provision of the expected services has been verified.

Developed RAS Peripheral

The developed RAS Peripheral has been designed

according to the following error classification criteria.

• Corrected Errors (CEs), which includes errors that are

detected and corrected by hardware.

• Deferred Errors (DEs), including detected uncorrected

errors that have no immediate impact on the operation

of the system. Operation can continue and dealing with

the error is deferred to a later point in time if the

corrupted data are consumed.

• Urgent Errors (UEs), consisting of detected errors that

require immediate action from system software.

A high-level block description of the architecture of the

developed RAS peripheral is depicted in Figure 1. It

comprises the following main building blocks.

The Error Mux receives the error control signals

generated by the error-checking circuitry of the monitored

blocks and generates an error message comprising a Source

ID, which identifies the block generating the error, and

Error Type (either CE, or UE, or DE).

The FIFO Buffer, a circular buffer including the

Synchronization Buffers, which stores the error messages

from the Error Mux and pair them with the address of the

erroneous location coming from the Address Buffer.

The Main Controller, which selects the register bank

where to locate a new error record. For efficiency purposes,

it adopts a fully associative cache-like approach, selecting

the first free bank that it finds. In case all banks are

occupied by valid error records, it may overwrite one of

them or discard the new error record and keep the older

ones, according to the following hierarchy: UE > DE > CE.

* Corresponding author: daniele.rossi1@unipi.it. This work has been partially supported by EU HPC-EPI-SGA2 project and by the Italian

Ministry of University and Research (MUR) in the framework of the FoReLab project (Departments of Excellence).

mailto:daniele.rossi1@unipi.it

2 RISC-V Summit Europe, Barcelona, 5-9th June 2023

The DE Controller handles the indication of deferred

errors. To perform its task, the read/write signal is also

necessary. Indeed, if a memory location storing data with a

DE is accessed during a read operation, this poisonous data

are going to be consumed. Therefore, the DE needs to be

escalated to an urgent error UE. Instead, tracking a write

operation to a location with a deferred error allows us to

invalidate the corresponding error record, since in this case

old data are going to be overwritten by new ones.

In the Error Record Banks, there are the following 64-

bit registers to store all necessary information on errors.

Feature Register, which defines the main characteristics

of the RAS interface and is configured at implementation

stage. As an example, it specifies the type of errors that are

logged (CE, DE, UE), whether the counter for corrected

errors is implemented or not, if the timestamp is stored,

kind of errors generating an interrupt, etc.

Control Register stores a set of enable signals for the

different features (for instance, if the error reporting is

enabled, for which cases the interrupt is enabled, etc). It

can be modified at runtime.

Status Register stores information on the error, that is the

error message, or error syndrome, and some valid bits

related to the address and miscellaneous registers, if a

corrected error counter overflow is implemented, or

whether the error record has been overwritten.

Address Register stores the address of the erroneous data.

Two Miscellaneous Registers, which store additional

information about the logged error. Its timestamp is also

stored in this register.

Finally, the Interrupt Generator (IRQ Gen) is in charge

of generating the interrupt signal in different scenarios,

depending on the features of the RAS Peripheral chosen at

implementation time (included in the Feature Register).

Table 1: Area occupation for 7nm standard cell.
Peripheral

Blocks

Area (µm2) Gate Equivalent

Comb Seq Tot Comb Seq Tot

Err. Mux 3.52 4.84 8.36 45833 63021 108854

Synch. Buff. 0.17 27.42 27.59 2214 357031 359245

FIFO Buff. 73.78 79.49 153.27 960677 1035026 1995703

Err. Rec. Banks 60.85 87.97 148.82 792318 1145442 1937760

Controllers 86.48 3.88 90.36 1126042 50520 1176562

IRQ Gen. 1.94 0.40 2.34 25260 5209 30469

In order to evaluate area overhead of the developed RAS

peripheral, we have synthesized it with a 7 nm standard cell

technology. As an example, we have considered two

register banks. Table 1 reports the area occupation figures.

FPGA-based Test Platform Implementation

The RAS Peripheral developed has been implemented

and prototyped to verify and validate its behavior using an

FPGA board Xilinx Zynq ZCU104. Figure 2 shows the

structure of the prototype developed for testing purposes.

All blocks are accessed via memory mapping, and AXI4

communication protocol is implemented. The RISC-V

processor is a CV32E40P core, a 4-stage in-order 32-bit

RISC-V processor that implements RV32IMFC ISA [6]. It

is worth noting that the developed RAS Peripheral can be

also adopted with 64-bit RISC-V processors. The

implemented test platform includes a UART interface that

is used to print on terminal, and a JTAG for code loading

on Main Block RAM (BRAM), which is also used for data.

Central Direct Memory Access (CDMA) soft Xilinx IP

core is used for memory-to-memory transfers between

second and third Block RAMs. These two memory blocks

implement a SEC-DED ECC for single error correction and

double error detection, allowing us to identify whether the

block transferred includes any memory location with

erroneous data. It is worth noting that ECC circuitry and

fault-injection ability for Block RAMs is provided by

Vivado. All performed tests have confirmed the correct

behavior of the developed RAS Peripheral.

References

[1] R. Canal et al., “Predictive Reliability and Fault Management

in Exascale Systems: State of the Art and Perspectives”. ACM

Computing Surveys 53(5), Jan. 2020.

[2] AMD64 Architecture Programmer’s Manual, Volume 2:

System Programming, Oct.. 2022.

[3] Intel Xeon Processor E7 Family: Reliability, Availability, and

Serviceability - White paper.

[4] Arm® Reliability, Availability, and Serviceability (RAS)

Specification - Armv8 Architecture Profile, July 2019.

[5] RERI (RAS Error-record Register Interface) task group. URL:

https://lists.riscv.org/g/tech-ras-eri.

[6] RISC-V International. URL: https://riscv.org/.

Figure 2. Test prototype for RAS Peripheral validation.
Figure 1. Architecture of the developed RAS peripheral.

https://lists.riscv.org/g/tech-ras-eri
https://riscv.org/

