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Abstract

We present our BLIS-like general matrix multiplication (gemm) for the multicore RISC-V processor embedded
in the GAP8 platform, and evaluate the parallel performance of this computational kernel in a deep learning
(DL) scenario. Concretely, we leverage the IM2COL approach to transform the convolution layers into gemm,
and develop a parallelized algorithm tailored for this ultra-low-power processor, targeting DL inference with a
MobileNet-v1 convolutional model. Our experimental results demonstrate that the gemm algorithm achieves
a significant speed-up compared to the sequential version. This work thus contributes to the development of
high-performance and energy-efficient machine-learning applications for multicore RISC-V processors.

Introduction

Implementing deep learning (DL) on edge devices for
Internet-of-Things (IoT) appliances is critical in order
to enhance privacy. Moreover, moving computations
from the cloud to IoT nodes, closer to the sensors,
significantly reduces the amount of data sent over the
network, thereby decreasing latency and power con-
sumption [1, 2]. The wide variety of IoT applications,
many of which employ DL-based technologies, has
led to a diverse range of edge processor architectures,
which include RISC-V ISA-based cores. This diversity
together with the severe constraints of these devices
on power consumption, memory capacity, and com-
putational performance, emphasize the utmost need
to carefully select the algorithms and optimize the
software running on them.

1 void Gemm_B3C2A0( C[M ][N ], A[M ][K], B[K][N ] ){
2 for ( jc = 0; jc < N; jc += Nc )
3 for ( pc = 0; pc < K; pc += Kc ) {
4 //Pack Bc

5 Bc := B[pc : pc + Kc − 1][jc : jc + Nc − 1];
6 for ( ic = 0; ic < M; ic += Mc ) {
7 //Pack Cc

8 Cc := C[ic : ic + Mc − 1][pc : pc + Kc − 1];
9 for ( pr = 0; pr < Kc; pr += Kr )

10 for ( ir = 0; ir < Mc; ir += Mr )
11 // Micro -kernel
12 for ( jr = 0; jr < Nc; jr++ )
13 Cc[ir : ir + Mr − 1][jr : jr + Nr − 1]
14 + = Ac[ir : ir + Mr − 1][pr]∗
15 Bc[pr][jr : jr + Nr − 1];
16 }
17 }
18 }

Figure 1: gemm B3C2A0 variant algorithm.

The general matrix multiplication (gemm), C =

A · B, where A,B,C represent matrices of the ap-
propriate dimension, is a critical operation for DL
inference and training. Many high-performance imple-
mentations of gemm in open-source and commercial
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libraries adhere to the GotoBLAS ideas [3] to formu-
late the algorithm as a collection of five nested loops
around a key component, known as the micro-kernel,
which performs a small-scale gemm operation. In ad-
dition, they apply blocking to the matrix operands to
improve the cache hit ratio. For this purpose, the loops
in the gemm operation are reordered in a specific man-
ner, and the loop strides are set correspondingly. This
results in different variants of the operation, which
place blocks of A,B,C on specific levels of the memory
hierarchy [4, 5].

Proposed Approach

We apply the techniques advocated by BLIS [6], rear-
ranging the structure of the gemm algorithm in order
to accommodate the memory hierarchy of the GAP8
processor. This architecture is composed of 9 RISC-V
cores (1 fabric controller, or FC, and an 8-core clus-
ter), plus a number of scratch pad memories, asking
the programmer to orchestrate the data movements
between these memory levels as part of the algorithm.

Optimizing the IM2COL-based convolution for the
GAP8 system results in the following contributions:

• We implement a BLIS-style gemm algorithm that
builds the gemm micro-kernel upon the dot prod-
uct, yielding an algorithm where (a block of) ma-
trix A resides in the processor vector registers;
see algorithm B3C2A0 in Figure 1. This organiza-
tion thus takes advantage of specialized RISC-V
extensions of instruction set architecture (ISA)
for the GAP8 processor.

• We develop and validate an analytical perfor-
mance model for gemm on the GAP8 processor
that delivers accurate estimations when integrat-
ing different micro-kernels into the algorithm.
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Figure 2: Theoretical (T) and experimental (E) execution
time for layer #12 of MobileNet-v1, for different micro-
kernels, using a single cluster core in GAP8.

• We assemble an instance of gemm optimized for
8-bit integer (INT8) arithmetic that can be easily
adapted for fixed-point arithmetic.

• We perform an experimental evaluation of the
realization of gemm on a single core (FC or cluster
core) and optimize it for parallel execution on the
RISC-V multicore processor using the best micro-
kernel indicated by the model.

Experimental Results

We next evaluate the performance of our sequential
and parallel implementations of gemm on the GAP8
processor. For brevity, we discuss the results for layer
#12 of the MobileNet-v1 model only. (Similar results
were obtained for other layers of this model.) Applying
the IM2COL transform to the target layer yields a
gemm of dimensions m = 256, n = 784, and k = 2304.
To start with, we validate the analytical performance
model, comparing the theoretical breakdown of execu-
tion time with the experimental values obtained from
a real run. Figure 2 shows the time for the sequen-
tial implementation of the B3C2A0-based gemm when
integrating distinct micro-kernels. The bars labelled
with the prefix “T” correspond to the theoretical time
estimated by the analytical model while those labelled
with the prefix “E” are from the real executions. The
plot exposes that the model provides accurate esti-
mations of the execution times, which can be useful
for selecting the best micro-kernel for this RISC-V
microprocessor. From this study, we can identify that
the best micro-kernel for the target layer is 4× 20.

In the parallel B3C2A0-based gemm, we distribute
the operations into two parts: On the one hand, the
outermost loops of the algorithm up to the loop in-
dexed by ir in Figure 1 are executed on the FC. On
the other hand, from that point inwards, the execution
is dispatched to the cluster cores.

Figure 3 reports the overall execution time and
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Figure 3: Execution time and speed-up for layer #12 of
MobileNet-v1, using the FC and the cluster cores in GAP8.

speed-up for the execution of layer #12 of MobileNet-
v1, using the FC core and the cluster cores in GAP8.
The results expose the benefits of parallelizing the
sequential code.

Conclusions

In this work, we have implemented and evaluated a
parallel BLIS-like algorithm for the RISC-V-based
GAP8 platform. In addition, we have compared our
algorithm with a theoretical model that indicates the
best micro-kernel size for a given gemm scenario. Fi-
nally, we have evaluated the scalability of this solution
when using the 8-core RISC-V cluster.
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