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Abstract

Safety-critical domains, such as automotive, space, and robotics, are adopting increasingly powerful multicores
with abundant hardware shared resources for higher performance and efficiency. However, mutual interference
due to parallel operation within the SoC must be properly validated. Recently, the SafeTI traffic injector has
been released and integrated in a homogeneous RISC-V multicore for testing, otherwise untestable casuistic for
software-only solutions. This paper introduces some enhancements performed on the SafeTI, which include
internal pipelining for higher-rate traffic injection, and its tailoring to multiple interfaces, as well as its integration
in a more powerful heterogeneous RISC-V multicore based on Gaisler’s technology for the space domain.

Introduction

Increasing performance demands in safety-critical real-
time systems impose the adoption of Multi-Processor
Systems-on-Chip (MPSoCs). MPSoCs include mul-
tiple cores and accelerators that run several tasks in
parallel, sharing hardware resources for efficiency rea-
sons (e.g., on-chip caches, memory controllers, I/O
interfaces). Such sharing brings timing interference
across cores, accelerators, and I/O interfaces, since
several devices may contend for access to a specific
device unable to serve requests from different sources
simultaneously. Hence, requests are serialized, causing
execution time delays on the affected tasks.

The development process of safety-critical systems
is guided by domain-specific safety standards and
guidelines (e.g., ISO26262 for automotive) that im-
pose safety requirements to the system, which often
include real-time requirements (e.g., braking the car
within a specific timeframe since the braking pedal
is activated). The architectural design of the system
is devised to meet those safety requirements by con-
struction, but the safety development process also
imposes testing on the system to validate that safety
requirements are effectively preserved.

In the case of timing interference, it is particularly
challenging to test key performance corners, such as
interference caused by asynchronous activity (e.g., due
to traffic arriving through an Ethernet port), espe-
cially if the type of transactions that should be tested
cannot be induced synchronously by the cores, hence
precluding the use of software tests to validate those
cases.
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Recently, the SafeTI traffic injector [1, 2] has been
proposed to tackle this gap. The SafeTI is capable of
producing programmable traffic patterns, with high
flexibility and controllability, hence allowing to test
scenarios synchronously despite the fact they would
only occur asynchronously in practice. Unfortunately,
the current implementation of the SafeTI only works
with AMBA Advanced High-performance Bus (AHB)
interfaces, has been proven only in a 4-core homoge-
neous RISC-V multicore [3], and has some limitations
to inject traffic at a sufficiently high frequency.

This paper introduces the enhancements performed
in the SafeTI to remove most of its constraints, such
as pipelining its architecture for higher injection fre-
quency, porting it to the popular AMBA Advanced eX-
tensible Interface (AXI), and integrating it in multiple
interfaces of a more powerful heterogeneous MPSoC
based on Frontgrade Gaisler technology for the space
domain [4]. We also provide some future prospects for
this component.

SafeTI Enhancements

Overview. The SafeTI is a programmable traffic
injector consisting of a traffic descriptor buffer (see
Figure 1, top), a set of control registers, and the traffic
injector itself, which consumes the descriptors from
the buffer as dictated by the control registers that,
for instance, indicate when the traffic injection should
start. Traffic descriptors encode the traffic pattern
to be generated, including a target address, whether
the access is read or write, the amount of data to
transfer, and repetitions. The original realization of
the SafeTI has some limitations that we have removed.
The remaining of this section describes the main ones.

Initialization of the descriptors. Originally,
the SafeTI was connected to the AMBA AHB for
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Figure 1: Original SafeTI architecture (top), and en-
hanced one (bottom).

both traffic injection and configuration (see Figure 1,
top). However, programming descriptors in the buffer
through the AMBA AHB data interface brought some
concerns: (i) buffer updates could experience and cause
timing interference, (ii) buffer updates could pollute
cache memories, and (iii) buffer updates could become
simply wrong.

Regarding timing interference, fetching descriptors
through the same interface used for data transfers
in the cores could create unforeseen interference in
the cores. Regarding cache pollution, since descrip-
tors were fetched through the regular data path, they
could pollute cache memories evicting useful contents.
Finally, if the SafeTI did not have access to coherent
data from the cores, the descriptors would not be avail-
able for the traffic injector to load, retrieving obsolete
contents from memory instead of the correct traffic
pattern. To solve these limitations, we have enabled
the use of the AMBA Advanced Peripheral Bus (APB)
for configuration purposes. By being a separate in-
terface, it neither interferes with data transfers, nor
pollutes caches, nor experiences coherence problems
since the APB interface writes coherent data to any
SafeTI module. This is illustrated in Figure 1, bottom.

Injection rate. The original design of the SafeTI
was not pipelined, which implied that some cycles were
needed from the time a descriptor was fetched until
the corresponding traffic was injected. This charac-
teristic limited the injection rate since back-to-back
descriptors needed to be fetched and decoded prior to
execution. To solve this limitation, we have pipelined
the design of the SafeTI, hence parallelizing descriptor
fetch, decode, and execution and enabling sustained
traffic limited by the interface only.

Target interfaces. Originally, the SafeTI was
developed to support AMBA AHB only, since that
was the protocol of the interface where it was first
integrated [1, 3]. However, the architecture of the

Figure 2: SELENE SoC with 2 SafeTI modules.

SafeTI is not restricted to any particular interface and,
in principle, could be tailored to operate with virtually
any interface. In our case, we have already extended
it to work with AMBA AXI interfaces, such as those
of the SELENE SoC [4], which is a RISC-V based
MPSoC based on Gaisler’s technology and intended
for domains such as space, railway, and automotive.
This is illustrated in Figure 2, where we can see a
schematic of the SELENE SoC with a SafeTI instance
attached to the AHB interface and another to the AXI
interface.

Future Plans

Our future prospects for the SafeTI include performing
a more exhaustive verification and validation with the
aim of easing its adoption, and devising appropriate
descriptors for an exhaustive test campaign of the
SELENE SoC as an illustrative example of the use of
the SafeTI. In the mid-term, we also aim at tailoring
the descriptors and, potentially, the SafeTI design
itself to enable new applications in the area of security
(e.g., to counteract side-channel attacks) and testing
(e.g., test cache coherence protocols).

Summary

The SafeTI is a powerful tool to test performance
corners with limited effort, but its original design had
a number of limitations. This work shows that those
limitations have been removed, and the current design
is more efficient and portable.
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