
Towards a RISC-V Educational HW Lab

V. Mateev, J. Palacios, C. Camarero, B. Pérez, C. Martínez and P. Fuentes*

Departamento de Ingeniería Informática y Electrónica, Universidad de Cantabria

Abstract

Hardware-centric courses at Computer Science and Engineering degrees bene�t from using a HW-based ap-

proach following an actual computer ISA and an autonomous lab setup for practical sessions. Prior teaching

experiences using proprietary ISAs have shown the success of our methodology. However, the RISC-V architec-

ture is an appealing alternative due to its open nature and potential for pervasiveness. This work explores the

path towards using RISC-V architecture in the courses and the HW and SW needs that need to be adresssed.

Introduction

Computer Science degrees include a set of HW-centric

courses that introduce the student to the behavior of

a computer and its interaction with outside devices.

These courses allow students to understand the com-

ponents of a processor architecture and their impact

on the performance of a given piece of SW. It is impor-

tant to place a strong emphasis on the use of practical

sessions, where students put the theoretical contents

into practice and assimilate the concepts.

HW courses are usually given to beginner students,

which are more likely to be encouraged by the use

of actual HW. This approach also prevents typical

misconceptions favored by the use of simulators. An

actual ISA available on the market is more appealing

than a �ctional architecture, and allows implementing

a lab setup for practical sessions based on existing

devices. The same principle applies to the learning

process of I/O handling, where programming a driver

for simple peripheral devices is more engaging than

an abstract approach for a �ctional device.

At Universidad de Cantabria, the ARM architec-

ture is currently employed for these courses. However,

the RISC-V architecture has a promising roadmap

due to its Open Source nature, with emerging sup-

port in academia and the HPC community. Giving

students a �rst contact with the RISC-V architecture

during their most formative years can boost the im-

pact of the ISA. For these reasons, we have set out

for a transition to a RISC-V-based environment with

features similar to the ones in our current laboratory.

HW and SW Requirements

Introductory HW-based courses call for tools that are

easy to use and reduce complexity, while providing

*Corresponding author: pablo.fuentes@unican.es
Work supported by 6a Conv. de Proy. de Innov. Docente de
la Universidad de Cantabria, and Ministerio de Ciencia e In-
novación under contracts PID2019-105660RB-C22, TED2021-
131176B-I00, and Ramón y Cajal contract RYC2021-033959-I.

su�cient interaction with the HW. For this purpose,

we need a HW platform in which students can develop

assembly language and I/O programming. We want

to avoid the need of an external PC for SW devel-

opment or bare metal con�gurations. Thus, the HW

platform must be able to run an OS, handle regular

user peripherals, and provide a general I/O (GPIO)

to explore programming drivers.

An OS with a graphical interface is key to ease the

learning curve, o�ering tools such as a text editor with

syntax highlighting and a compiling suite. Achieving

this requires a GUI-based debugger. Our aim is to

adapt our in-house debugger to RISC-V and to an

OS that matches the other SW requirements.

A Raspberry Pi-based Lab Setup

When developing the current laboratory setup, the

ARM architecture was chosen due to its high market

share, which students �nd more relatable and useful

in their foreseeable careers. ARM-based Raspberry Pi

board is particularly appealing for its price, availabil-

ity through retailers, peripheral device ecosystem, and

its community of developers. The 1B+ model was se-

lected for its extensive documentation and single-core

CPU, which makes the outcome of a program execu-

tion more predictable for beginner students.

The RISC Operating System1 was found to very

nicely match our needs, as it provides a desktop envi-

ronment in which we can compile and execute graph-

ical applications. We also appreciate that RISC OS is

cooperative multitasking, which makes clear what the

machine is executing at each moment. RISC OS fur-

ther allows user applications to replace interruption

handlers and other low level functions, being able to

resemble bare metal when desired. We �nd this very

educative, as we generally work on a relatively easy

to use desktop environment, and we can show cleanly

aspects of the architecture by temporarily removing

those SW parts that would interfere.

1 Source code and ISOs can be found in RISC OS Open.

RISC-V Summit Europe, Barcelona, 5-9th June 2023 1

mailto:pablo.fuentes@unican.es
https://www.riscosopen.org/content/


An in-house debugger: UCDebug

The sole limitation observed in RISC OS was the lack

of a GUI-based debugger; the default prompt-based

debugging tool is very powerful but somehow di�-

cult to use, and GUI-based alternatives were less func-

tional or expensive to acquire. To address this lim-

itation, a debugging tool with a simple, at-a-glance

graphical interface was developed in-house. The tool,

named UCDebug2, intercepts CPU exceptions and in-

terrupts to provide the student with pedagogical in-

formation about errors and to stop the execution of

a program loaded onto the tool. This feature is par-

ticularly useful because RISC OS is a cooperative OS

that does not preempt a program hoarding comput-

ing resources. The use of a graphical interface, made

possible by the graphical library provided by RISC

OS, allows students to observe at all times memory

content and the instructions in their programs. The

concrete lab setup developed for the practical sessions

and the outcome of the project are described in [1].

A platform for the pandemic

Due to the COVID-19 pandemic restrictions, a re-

mote learning platform was developed with the intent

to provide students with a similar experience to the

lab setup used in-person. The system, called PiGAR-

DEN3, allows a student access through a VNC con-

nection to an actual board running RISC OS, and pro-

vides the student with controls to handle and to ob-

serve those peripherals connected to the board. The

limited availability of boards is solved through a time-

share scheduler. The system allows students to carry

on with their projects through a shared �le system,

and gives teachers the ability to observe in real time

the interaction of a student with any given board.

Since its conception, the system has garnered interest

from the students due to the lack of a�ordable devices

at retailers spawned by the semiconductor crisis.

Towards a RISC-V HW Lab

Hardware Platforms

We �rst explored the possible transition to RISC-

V in 2019. Some available chips at that time were

SiFive's HiFive1 and HiFive Unleashed. The HiFive

Unleashed was closer to the Raspberry Pi in our cur-

rent lab setup, but was dismissed due to budget con-

straints in favor of the HiFive1. HiFive1 limitations

forced o�setting development tasks to a regular PC,

2 Available in a public GitHub repository.
3 The SW architecture and a description of the HW con�gura-
tion can be found at https://gitlab.com/pigarden

and sending back to the device for execution, oppos-

ing the needs of the desired teaching environment.

Nowadays there are far more a�ordable RISC-V

chips which could adequately replace the use of the

Raspberry Pi. There is the SiFive VisionFive 24

which, although above the price bracket of a Pi board,

is signi�cantly less expensive than a regular PC and

is equipped with up to 8GB of RAM and a 64-

bit 1.5GHz CPU. A less expensive alternative is the

Sipeed Lichee Pi 4A5, which uses a 64-bit CPU and

can be con�gured with up to 16GB of RAM. Both

boards have an HDMI interface, two Gigabit Ethernet

ports, USB connectivity and a GPIO connector with

20 and 40 pins for the Lichee and VisioFive boards,

respectively. Another option is the Asus Tinker V

board6, intended for IoT purposes and less powerful,

with a single-core processor and 1GB of RAM. This

board comes from a more established manufacturer,

but is not yet available. We are currently evaluating

the VisionFive 2 and Lichee Pi boards, to assess their

suitability for our teaching needs.

Software Suite

In our �rst exploration of RISC-V we worked bare

metal on the HiFive1 board while developing in a

PC. In the PC we employed SiFive Freedom E SDK

Toolchain to build and debug, and the PlatformIO

extension of Visual Studio Code to upload code to

the HiFive1 board. This showed that executing and

debugging programs in a RISC-V board was feasible,

but still required an external PC. We also managed

to install Zephyr OS on the HiFive1, but it was not

further explored.

OS availability for RISC-V has risen as the platform

garners interest and adoption, although OS support

varies between devices. The boards that are being

analysed support general Linux distros, such as De-

bian or Fedora, and purpose-built platforms such as

Tina7 or Waft8.

Our next step is to �nd the desired SW features in

an OS that can be booted in a RISC-V board.

References

[1] Pablo Fuentes et al. �Addressing Student Fatigue in Com-
puter Architecture Courses�. In: IEEE Transactions on

Learning Technologies 15.2 (2022), pp. 238�251. doi: 10.
1109/TLT.2022.3163631.

4 https://www.kickstarter.com/projects/star�ve/vision�ve-2
5 https://sipeed.com/licheepi4a
6 https://tinker-board.asus.com/product/tinker-v.html
7 https://github.com/Tina-Linux
8 Web Assembly Framework for Things.
https://chuangke.aliyun.com/waft

2 RISC-V Summit Europe, Barcelona, 5-9th June 2023

https://fuentesp.github.io/UCDebug/
https://gitlab.com/pigarden
https://doi.org/10.1109/TLT.2022.3163631
https://doi.org/10.1109/TLT.2022.3163631
https://www.kickstarter.com/projects/starfive/visionfive-2
https://sipeed.com/licheepi4a
https://tinker-board.asus.com/product/tinker-v.html
https://github.com/Tina-Linux
https://chuangke.aliyun.com/waft
https://chuangke.aliyun.com/waft

	Introduction
	HW and SW Requirements
	A Raspberry Pi-based Lab Setup
	An in-house debugger: UCDebug
	A platform for the pandemic

	Towards a RISC-V HW Lab
	Hardware Platforms
	Software Suite


