
The CORE-V software ecosystem: Ten lessons learned from
developing vendor specific compiler tool chains

Jeremy Bennett1

1Embecosm Limited

Abstract
CORE-V is a family of RISC-V processor cores available as free silicon IP from the Open Hardware Group

(abbreviated here as OpenHW Group). The OpenHW Group is a consortium of 102 industrial, academic and
other organizations creating free and open source RISC-V IP that is verified and commercially robust. The
CORE-V family makes heavy use of both non-standard and standard ISA extensions. In this talk we look at the
challenges is creating the software tool chains to go alongside this silicon IP and present a series of lessons
learned. This talk is illustrated by reference to both GCC and Clang/LLVM tool chains for CORE-V,
particularly the 32-bit CV32E40Pv2 processor.

Introduction
The CV32E40P processor is derived from the ETH

Zürich PULP RI5CY processor. The original project
developed a standard RISC-V RV32IMAC_zicsr core.
The CV32E40Pv2 project extends this processor with the
standard F and zfinx extensions along with 8 ISA
extensions from the ETH Zürich and the University of
Bologna PULP project [2]:
 Xcvmem post-incrementing load/store (25);
 Xcvhwlp hardware loops (6);
 Xcvalu general ALU operations (31);
 Xcvmac multiply-accumulate (22);
 Xcvbi immediate branching (2);
 Xcvelw event load (1);
 Xcvbitmanip PULP bit manipulation (16); and
 Xcvsimd PULP SIMD (220).
The numbers in parentheses refer to the number of

instructions in each extension. In addition CORE-V is a
proving ground for official extensions prior to ratification.
The CV32E41P is a Technology Readiness Level (TRL) 3
demonstrator of the Zc* extension, version 1.0.1, which is
also supported in the compiler tool chain (see [3] for a
description of TRLs). Over the past three years a team of
engineers from Embecosm, ETH Zürich, TU Tübingen,
University of Bologna and ISCAS PLCT have been
developing GCC and Clang/LLVM tool chains for
CORE-V.

We take it as axiomatic, that the CORE-V tool chains
must eventually be supported upstream. Vendor specific
variants of tool chains are supported by both GCC and
Clang/LLVM upstream, and this is provided for in the
RISC-V standards.

In this talk we explore the following areas:
 the technical implementation of the tool chain ISA

extensions;
 compliance with RISC-V ISA encoding;

 upstreaming vendor specific extensions; and
 the rôle of CORE-V as a proving ground for pre-

ratification RISC-V features.
We focus on the 32-bit CV32E40Pv2 processor, although

the topics apply to all other 32- and 64-bit CORE-V
processors. Throughout we highlight the lessons learned
from our experience.

Technical implementation
For the extended abstract we provide only the lessons

learned in each section. The full talk will provide the
detailed technical explanation.

1.1 The code bases
For both GCC and Clang/LLVM, we maintain out of tree

trackers of the upstream repositories on GitHub.
Lesson learned #1: The RISC-V tool chains are under

active development. Rebasing from a very old mirror is a
laborious job, requiring a lot of rewriting of the CORE-V
specific patches. Rebase often!

1.2 Identifying CORE-V in the code
We have submitted the two letter prefix "cv" to the

official RISC-V tool chain conventions repository [2].
Lesson learned #2: It takes a long time to get this

accepted. RISC-V subcommittees are a bottleneck, and
their involvement should be kept to a minimum.

1.3 Instruction encoding
The ISA extensions as originally defined by the PULP

project pre-date the finalization of the RISC-V ISA, and its
support for non-standard ISA extensions.

For CORE-V, the PULP instructions were all re-encoded
to use custom-0 through custom-3 fields, thereby becoming
RISC-V compliant. Some of these, while RISC-V
compliant do not use existing instruction formats.

RISC-V Summit Europe, Barcelona, 5-9th June 2023 1

1.4 Assembler support
Lesson learned #3: The GNU assembler lacks the

infrastructure to support variant encodings for multiple
versions of ISA extensions. Plan for a single version of any
ISA extension. If you need to update in the future, give it a
new name.

Lesson learned #4: The CORE-V ISA extensions were
specified using mixed case, which is not supported in the
GNU assembler. Only define assembler instructions in
lower case!

1.5 Linker support
The presence of new instruction formats can require new

linker relocations. This is needed for the CORE-V
hardware loop instructions. There are only 64 vendor
specific linker relocations available for all vendors in the
world. There is a proposed solution which has been in the
works for two years.

Lesson learned #5: Comprehensive vendor specific
relocation support is an absolute requirement if vendor
specific tool chains are to be supported upstream.

1.6 Defining builtin functions
Builtin functions are the first step towards full compiler

support for ISA extensions. While they look superficially
like ordinary functions, they are actually integrated within
the compiler itself, and are amenable to direct optimization
within the back-end of the compiler.

Lesson learned #6: Don’t slavishly define one builtin per
ISA extension opcode. Define builtin functions to serve the
user not the ISA extension.

Lesson learned #7: Defining a builtin function is not
always appropriate. Sometimes the new instructions can be
used to improve existing standard builtin functions.

1.7 Code generation
At this point things do get easier. This is just a matter of

extending back-end code generation patterns to take
advantage of the new instructions when these are available.
We can already generate post-incrementing load/store for
loops where appropriate.

1.8 Upstreaming
 Following upstream convention, the CORE-V tool chains

are built using corev as the vendor field in the target
triplet. Thus we have riscv32-corev-elf-gcc
rather than the generic riscv32-unknown-elf-gcc.
This results in VENDOR_COREV being defined, which is
used to gate all CORE-V specific code (all in the
config/risc-v directory).

Our aspiration had been to submit all ISA extensions at
the same time. However we have recognized that this
would represent i) a huge reviewing demand and ii) only be

possible once the vendor specific relocation issue is
resolved.

Another effect of this is that many of the CORE-V ISA
extensions have been complete (at least in the assembler)
for over a year. We have been continually having to rebase
and update these patches. Had the code been upstream, this
job would have been much easier.

Inevitably the commits as we develop code have not been
perfect first time. Before upstreaming, we have to recast all
the work into a rational set of commits, suitable for
upstream review. A rigorous requirement of commits to
follow the upstream tool coding conventions makes this
task less demanding.

Lesson learned #8: Upstream early, in small, well-
defined chunks.

Lesson learned #9: Ensure your out-of-tree commits
follow the upstream coding conventions at all time.

Discussion
We have presented the technical lessons we learned as we

have developed the CORE-V tool chains. However these
processor cores often incorporate upstream extensions
before they are finally ratified. Upstream GCC in
particular has very strict rules about not-accepting patches
until an extension is ratified, or at least frozen pending
ratification.

The CORE-V mirrors do not have this constraint. Thus
we can develop compiler code support earlier on. This in
turn allows extension developers early visibility of how
their extension may work in the compiler. For example the
Zc* extension has been supported in the CORE-V GNU
tool chain since draft 0.7.5. The latest tool chain supports
the frozen draft 1.0.1, and is in the process of being
submitted upstream for inclusion in GCC 13.1.

Lesson learned #10: Organizations like the OpenHW
Group can be a valuable proving ground for pre-ratification
RISC-V extensions.

Summary
We have presented 10 lessons learned by the multi-

national team developing GNU and Clang/LLVM tool
chains for the CORE-V family of processors. We hope
these will be of value to the wider RISC-V community.

References
[1] RISC-V Toolchain Conventions. Offical RISC-V

GitHub repository: github.com/riscv-non-isa/riscv-
toolchain-conventions.

[2] PULP: Parallel Ultra Low Power. https://iis-
projects.ee.ethz.ch/index.php/PULP. Retrieved 20 March
2023.

[3] Technology Readiness Level.
https://en.wikipedia.org/wiki/Technology_readiness_level.
Retrieved 10 May 2023.

2 RISC-V Summit Europe, Barcelona, 5-9th June 2023

https://en.wikipedia.org/wiki/Technology_readiness_level
https://iis-projects.ee.ethz.ch/index.php/PULP
https://iis-projects.ee.ethz.ch/index.php/PULP
https://github.com/riscv-non-isa/riscv-toolchain-conventions
https://github.com/riscv-non-isa/riscv-toolchain-conventions

	Abstract
	Introduction
	Technical implementation
	1.1 The code bases
	1.2 Identifying CORE‑V in the code
	1.3 Instruction encoding
	1.4 Assembler support
	1.5 Linker support
	1.6 Defining builtin functions
	1.7 Code generation
	1.8 Upstreaming

	Discussion
	Summary
	References

