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AERO:
Accelerated 
EuRopean clOud
An open-source software 
ecosystem for the EPI hardware

AERO Hardware/Software Stack

Example of leveraging the AERO Stack: 
Accelerate Java/Cloud workloads on RISC-V
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OS, drivers & virtualization
ØOptimized Linux distribution 
ØDocker, KVM (targeting CPU & RISC-V 

coprocessors)

Native Programming Languages
ØOpen-source heterogeneous 

programming languages & runtimes 
(SYCL, OpenCL, DPC++/OneAPI)

Managed Programming Languages
ØOpenJDK, GraalVM, TornadoVM, 

Quarkus

HW acceleration
ØLeverage HW components of Rhea for 

performance & security

Enabling Language Frontends
ØTornadoVM: a Java parallel programming 

framework and a JVM plugin for
transparent hardware acceleration on multi-
core CPU, GPUs and FPGAs.

Enabling RISC-V Backends
ØComputeAorta, from Codeplay, enables 

implementation of open standards such as 
OpenCL. It includes tooling to convert 
OpenCL C and SPIR-V into target ISA using 
existing LLVM backends.

Enabling Vectorization For RISC-V
ØData Parallel programs written in Java 

with TornadoVM can be accelerated using 
ComputeAorta’s vector units via RISC-V 
RVV ISA instructions generated from Java 
scalar code.

$ env SPIKE_SIM_DEBUG=1 CA_RISCV_DUMP_ASM=1 tornado --threadInfo myJavaProgram
Driver: OpenCL
Total number of OpenCL devices : 1
Tornado device=0:0 (DEFAULT)
OPENCL -- [ComputeAorta] -- RefSi M1

…

ARM/RISC-V based EU hardware designs are being developed

How to efficiently use it from high level programming languages?

Enriching the software ecosystem for Cloud deployment

Input: Java Sequential Code

Output: RISC-V 
Vectorized code 
using RVV 
instructions


