
Harnessing Hardware Acceleration with RISC-V and the EU Processor
Juan Fumero1, Athanasios Stratikopoulos1, Mehdi Goli2, Ruymán Reyes2,

Konstantinos Nikas3, Dionisios Pnevmatikatos3, Nectarios Koziris3 and Christos Kotselidis1
1Department of Computer Science, The University of Manchester, UK

2Codeplay Ltd, UK
3ICCS, National Technical University of Athens, Greece

AERO:
Accelerated 
EuRopean clOud
An open-source software 
ecosystem for the EPI hardware

AERO Hardware/Software Stack

Example of leveraging the AERO Stack: 
Accelerate Java/Cloud workloads on RISC-V

Contact us, Follow us

Funded by the European Union. Views and opinions expressed are however those of the author(s) only and do not necessarily reflect those of the European Union or the HaDEA. Neither the European Union nor the granting authority 
can be held responsible for them. Project number: 101092850. In addition, this work is funded by UK Research and Innovation (UKRI) under the UK government’s Horizon Europe funding guarantee for grant numbers 10048318 and 
10048915.

OS, drivers & virtualization
ØOptimized Linux distribution 
ØDocker, KVM (targeting CPU & RISC-V 

coprocessors)

Native Programming Languages
ØOpen-source heterogeneous 

programming languages & runtimes 
(SYCL, OpenCL, DPC++/OneAPI)

Managed Programming Languages
ØOpenJDK, GraalVM, TornadoVM, 

Quarkus

HW acceleration
ØLeverage HW components of Rhea for 

performance & security

Enabling Language Frontends
ØTornadoVM: a Java parallel programming 

framework and a JVM plugin for
transparent hardware acceleration on multi-
core CPU, GPUs and FPGAs.

Enabling RISC-V Backends
ØComputeAorta, from Codeplay, enables 

implementation of open standards such as 
OpenCL. It includes tooling to convert 
OpenCL C and SPIR-V into target ISA using 
existing LLVM backends.

Enabling Vectorization For RISC-V
ØData Parallel programs written in Java 

with TornadoVM can be accelerated using 
ComputeAorta’s vector units via RISC-V 
RVV ISA instructions generated from Java 
scalar code.

$ env SPIKE_SIM_DEBUG=1 CA_RISCV_DUMP_ASM=1 tornado --threadInfo myJavaProgram
Driver: OpenCL
Total number of OpenCL devices : 1
Tornado device=0:0 (DEFAULT)
OPENCL -- [ComputeAorta] -- RefSi M1

…

ARM/RISC-V based EU hardware designs are being developed

How to efficiently use it from high level programming languages?

Enriching the software ecosystem for Cloud deployment

Input: Java Sequential Code

Output: RISC-V 
Vectorized code 
using RVV 
instructions


