
Memory Authenticated Encryption Engine for a
RISC-V processor

Karim Ait Lahssaine and Olivier Savry

Univ. Grenoble Alpes, CEA, Leti, F-38000 Grenoble, France ∗

Email: firstname.name@cea.fr

Abstract

In this paper, we present the Memory Authenticated Encryption Engine (MAEE) hardware countermeasure
to ensure the confidentiality and authenticity of data in RAM and the associated interconnect bus. Using the
Subterranean 2.0 authenticated encryption algorithm, data used by a processor is secured at the output of cache
memory, and stored in memory as chunks, containing encrypted data and metadata for authenticity verification.
The MAEE provides protection against attacks targeting the memory and its bus, such as Rowhammer, fault
injections or side-channel attacks. We are also evaluating the performance of this countermeasure, by associating
it with the RISC-V CVA6 application core.

Introduction

The issues surrounding the cybersecurity of micro-
processors are becoming increasingly significant as
a result of the multiplicity of attacks. In response,
countermeasures are being developed to secure the
critical modules of the architecture. Among these
countermeasures, some secure the memory, by encryp-
tion solutions, thus guaranteeing the confidentiality of
stored data. But this is not enough, it is also necessary
to guarantee the integrity of the data to counter fault
injection or Rowhammer attacks and to ensure the
authenticity of the programs. Finally, in addition to
memory, the memory bus must also be secured, as it’s
a place where side-channel leaks can occur.

However, this countermeasure must limit the per-
formance degradation of the host system, such as la-
tency or memory and logic footprint. The hardware
countermeasure Memory Authenticated Encryption
Engine (MAEE) was designed on the basis of these
two observations. In a first step, we introduce this
countermeasure, the technological choices made and
the associated constraints. Secondly, we present its
implementation and its performance.

Authenticated Encryption

In order to address the problem, countermeasures exist,
but as shown by [1], most encrypt word by word and
associate a MAC (Message Authentication Code) with
each word, which is prohibitive in terms of memory
footprint. To limit the cost, authenticated encryp-
tion algorithms are the preferred solution, because
in addition to encrypting the data per chunk, they

∗This work was funded thanks to the French national program
”Programme Investissement d’Avenir IRT Nanoelec” ANR-10-
AIRT-05.

Figure 1: Subterranean 2.0 algorithm

associate a MAC (Message Authentication Code) with
the entire chunk. Several algorithms exist, but the
one chosen must be lightweight. The choice was made
from the list of candidates for the NIST Lightweight
Cryptography (NIST LWC) competition.

After studying the algorithms and their bench-
mark[2], we chose Subterranean 2.0[3], for its small
logical footprint, its high data rate and the absence
of security holes in the state of the art. In addition,
Subterranean 2.0 has a shorter initialization time and
allows 2 rounds to be instantiated for the same cost
as a single ASCON round.

This algorithm, as shown in Figure 1, is made up
of several rounds, and between them data is absorbed
or extracted. In the initialization for the encryp-
tion/decryption, in order, a 128-bit key and a 128-bit
nonce are absorbed. The nonce is composed of the
address, nonce1, and a random part updated at each
write, nonce2. Nonce1 prevents block swapping. Next,
the metadata, the decrypted/encrypted data is ab-
sorbed and the encrypted/decrypted data is extracted.
Finally, a 64-bit MAC is extracted.

For the initialization of the algorithm, 18 rounds are
needed, which is very expensive. In order to minimise
this cost, we need to do as little initialisation as
possible, for a given number of read/write operations
in memory. So instead of reading/writing a single
word, we will read a whole set of words, called a
chunk, and this set has the size of a cache line.

RISC-V Summit Europe, Barcelona, 5-9th June 2023 1

mailto:karim.aitlahssaine@cea.fr


The encryption takes 40 cycles, and as we choose a
chunk size of 160 bytes, with 128 bytes of data (16x64
bits), we have a throughput of 3.2 bytes per cycle.

Figure 2: Memory chunk
(20*64 bits)

In 32 bytes of
metadata, (see Fig-
ure 2), there is a
part of the nonce(64
bits), ptr_id pointers
for each 64-bit data
(16x8 bits) and the
MAC (64 bits).

The ptr_id are op-
tional and used to
implement a tagged
memory to avoid spa-
tial and temporal
leakage. The nonce
stored in memory is
the random part of
the 128-bit nonce,
the other part is ex-
tracted from the ad-
dress.

Implementation

For the implementation, two MAEEs are used, one
for the write bus and one for the read bus, to avoid
introducing a bottleneck. They are placed between
the cache and the interconnect bus, to avoid leakage
into the bus. On a write, a 128-byte cache line passes
through the MAEE, and an authenticated 160-byte
encrypted chunk comes out to be stored in memory.
And vice versa for a read.

Encryption and metadata addition are transparent
to the processor. Firstly, thanks to an address transla-
tion, which is light due to the size of the chunk chosen.
Secondly, thanks to the chunk configuration which
allows on-the-fly encryption, as it provides the data
in the order desired by Subterranean 2.0.

In addition, in order to improve latency, 2 hardware
rounds are implemented instead of one, in order to
(de)encrypt 64 bits per clock cycle, and thus use the
full width of the bus without the need to buffer. The
MAEE, Figure 3, consists of the following modules :

• Subterranean : Main module that contains the
2 rounds and performs authenticated encryption

• Address Translation : Performs light address
translation

• RNG : Generates a seed at processor startup
that is used as the first nonce, then at each write
the MAC is accumulated to this seed, to generate
the random part of the following nonces.

• Masking Unit : Generates masks to send the
masked data to the cache.

Figure 3: MAEE inner modules

• Integrity Unit : Generates an integrity tag for
each piece of data sent to the cache.

Performance The two MAEEs were implemented
on Genesys2 FPGA board, associated with a RISC-V
CVA6 core. In addition to adding the MAEEs, we
have to choose the write-back cache, and modify it
to have a 128 bytes cache line, and handle atomic
operations.

After emulating the SoC (CVA6 + MAEE + Pe-
ripherals including memory) on FPGA, and running
a Linux kernel, we obtain the following performances
Table 1.

Without MAEE With MAEE Overhead %

SoC LUTs 86743 90889 4.78

SoC FFs 53593 54840 2.34

DRAM size 819 MB 1 GB 25

Linux Boot Time 2 min 57 s 3 min 17 s 9.7

Read Rate 56.26 MB/s 50.68 MB/s -9.92

Write Rate 46.87 MB/s 37.70 MB/s -19.56

Table 1: MAEE Performances on CVA6

The overhead for the logical footprint is less. For
the memory footprint, it is 25%, which is important
but it must be compared to existing authenticated
encryption with an overhead of 100%. For throughput,
the results were obtained with the RAMspeed bench-
mark on Linux (INTmark with 1Gbytes per pass)[4].
We can see that the overhead for writing is twice as
high as for reading, this is explained by the choice of
the WB cache which obliges to pass twice through the
MAEE during a write.

In conclusion, our countermeasure has little impact
on the hardware footprint, but significantly degrades
throughput, especially write throughput. The presence
of an L2 cache can greatly improve this situation. It
remains to see the performance with a benchmark suite
such as SPEC, and to perform a security evaluation.

2 RISC-V Summit Europe, Barcelona, 5-9th June 2023



References

[1] Pascal Nasahl et al. “CrypTag: Thwarting Physical and
Logical Memory Vulnerabilities Using Cryptographically
Colored Memory”. In: (2021).

[2] Kamyar Mohajerani et al. “FPGA Benchmarking of Round
2 Candidates in the NIST Lightweight Cryptography Stan-
dardization Process: Methodology, Metrics, Tools, and
Results”. In: (2020).

[3] Joan Daemen et al. “The Subterranean 2.0 Cipher Suite”.
In: IACR Transactions on Symmetric Cryptology 2020.S1
(June 2020), pp. 262–294.

[4] Alasir. RAMspeed, a cache and memory benchmarking
tool. v2.6.0. 2009. url: https://github.com/cruvolo/
ramspeed.

RISC-V Summit Europe, Barcelona, 5-9th June 2023 3

https://github.com/cruvolo/ramspeed
https://github.com/cruvolo/ramspeed

	Introduction
	Authenticated Encryption
	Implementation
	Performance


