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Abstract

This paper presents a procedure for implementing simulation-based fault injection on the Ibex core with its UVM
testbench. The simulation aims to identify the critical flip-flops where faults could lead to erroneous system
operation. We first select testcases for the simulation, based on their contributions to functional coverages. Then
the simulation is conducted at the RTL. For each testcase, we remove the identified critical flip-flops from its
fault list to reduce the number of faults we need to inject. The identified critical flip-flops are mapped from RTL
to the gate level eventually. The procedure could reduce the time required by fault injection to some extent.

Introduction

The probability of system failures in microprocessors,
caused by soft errors, increases as the complexity of
SoCs increases. Simulation-based fault injection is a
commonly used method for circuit reliability analysis
in the early design stage. It enables us to identify the
vulnerable parts of a circuit and employ fault mitiga-
tion techniques to improve the reliability of circuits
before manufacturing.

UVM is the most popular simulation verification
methodology used in the industry today. Testbenches
based on UVM support coverage-driven verification
can balance verification completeness with minimum
verification effort and time. Ibex [Schiavone:2017]
is an open-source 32-bit RISC-V CPU core designed
for embedded control applications. It is verified using
a UVM-based testbench [ETH Zurich:2018], which
uses the open-source RISCV-DV random instruction
generator to generate instructions. The testbench
compares the trace log of the Ibex core to the trace
log generated by a golden model ISS to check whether
the program is executed correctly.

This work presents a procedure to conduct
simulation-based fault injection at the gate level on
the Ibex core with the UVM testbench to identify
critical flip-flops which determine the core’s correct
functioning. The workflow could reduce the time in-
volved in the fault simulation from three aspects. 1)
We first implement the simulation at the RTL to iden-
tify critical flip-flops and then map these flip-flops
to the gate level (GL). 2) We select testcases from
the testcases provided by the UVM testbench based
on their contributions to the functional coverage to
reduce the number of testcases required by the fault
injection. 3) We use fault pruning to reduce the faults
we inject for each testcase.
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Figure 1: The process of simulation-based fault injection.

Methodologies

The process of simulation-based fault injection is
shown in Figure 1. We use Integrated Metrics Cen-
ter(IMC) provided by Cadence to analyze the contribu-
tion of each test case provided by the UVM testbench
to the functional coverage. We remove the testcases
which don’t or less contribute to the coverage and
merge some of the testcases to reduce the number
of testcases from 39 to 6. The selected testcases are
listed in Table 1 and cover around 98.2% functions.
Correspondingly, the fault simulation is implemented
at the RTL first to identify the critical flip-flops in the
Ibex core. These flip-flops are mapped from RTL to
the gate level eventually.

We use the Xcelium fault simulator provided by Ca-
dence for the fault simulation. This simulator enables
us to reuse the UVM functional verification testbench
to build the fault simulation testbench. In our experi-
ments, the simulator compares the value of primary
output signals in Ibex when it is fault-free with the
value when a fault is injected. The simulator anno-
tates the fault as detected if there is any difference.
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Table 1: Fault simulation results on Ibex at the RTL.

Test
Name

Simulation
Time (ns)

Functional
Coverage

Number of
Flip-flops Injected
Permanent Faults

Number of
Flip-flops Injected

SEU Faults

Number of
Detected

Critical Flip-flops

Number of
Runs

Time
(hours)

rand_jump 59,400,814 4598 2227 943 590 23314 5196
pmp_basic 3,611,144 177 1637 954 62 8044 81

debug_branch_jump 21,970,704 10 1575 349 53 6640 338
mem_error 9,818,104 8 1522 442 327 5942 206

debug_ebreakmu 13,274,244 3 1195 179 101 2627 80
invalid_csr 2,261,544 2 1094 14 0 2258 23

Otherwise, the fault will be annotated as undetected.

RTL vs. GL

Xcelium fault simulator supports fault injection at the
RTL and the gate level (GL). We investigate the differ-
ence between the fault simulation results at the RTL
and GL to prove the process in Figure 1 is feasible.
There are 2110 flip-flops matched at the RTL and the
GL, 117 flip-flops existing only at the RTL, and 16 at
the GL. For flip-flops existing only at the RTL, they
are removed by the optimized function of the synthesis
tool. Flip-flops only existing at GL are these defined
as an enumeration type at RTL, which is not sup-
ported by the simulator. Table 2 compares the results
and time of fault simulation at the RTL and the GL.
The difference between them is minimal for all fault
types. For example, only 3.3% (7/2110) flip-flops have
different results on Stuck-at-0. The time (based on a
single-core Intel Xeon processor E5-4627V2) required
for fault simulation at the RTL is less than at the GL,
especially for SEU.

Table 2: Comparision of fault simulation at the RTL
and the GL.

Fault type Difference
Number of runs Time (hours)

RTL GL RTL GL

Stuck-at-0 7 (≈ 3.3%) 2227 2126 28 34
Stuck-at-1 13 (≈ 6.2%) 2227 2126 26 31

SEU 10 (≈ 4.7%) 18860 19080 1685 2493

Fault Injection

Fault simulation is conducted in the order of the test-
case’s contribution to the functional coverage from
high to low (see Table 1). For each testcase, as shown
in Figure 1, we first inject permanent faults (i.e., stuck-
at-1 or stuck-at-0) into all flip-flops. If the fault is not
detected on the outputs, we can interpret that the fault
is masked or the flip-flop is not covered by the test-
case. The flip-flop is therefore considered non-critical.
Otherwise, transient faults are injected several times
in a specified time window. We only inject SEUs here

for transient faults because SETs could be masked by
flip-flops that are clock-event sensitive. The flip-flop
will be identified as critical if the number of detected
SEU faults is larger than the threshold we define.

If the flip-flop is annotated as critical, it will be
removed from the fault list of the following testcase.
In Table 1, the 1st testcase identifies 590 critical flip-
flops. And these flip-flops are removed from the fault
list of the 2nd testcase. The number of flip-flops for
permanent fault injection is reduced from 2227 to
1637, and similar procedures are conducted on other
testcases. Table 1 also presents the simulation time of
each testcase, the time required by fault simulation,
the number of identified critical flip-flops, etc.

Discussion

The procedure could reduce the time involved in the
fault simulation as described to some extent. There
are some limitations to this approach. We need to
specify the threshold to identify critical flip-flops cor-
rectly at the beginning. Otherwise, the simulation
from the following testcase might be based on an in-
correct fault list. The testcases should also be selected
based on the relevant application cases they cover. For
example, testcase4 randomly inserts instruction fetch
or memory load/store errors. If the function is not the
concern, it should also be removed from the testlist.
The simulation time of testcases could be reduced if
we could use more efficient constraints. The efficiency
could be improved further with these considerations.
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