
SafeLS: Toward Building a Lockstep NOEL-V Core
Marcel Sarraseca†, Sergi Alcaide†, Francisco Fuentes†,*, Juan Carlos Rodriguez†,

Feng Chang†, Ilham Lasfar†, Ramon Canal†,‡, Francisco J. Cazorla†, Jaume Abella†

† Barcelona Supercomputing Center (BSC), Barcelona, Spain
‡ Universitat Politècnica de Catalunya (UPC), Barcelona, Spain
* Universitat Autònoma de Barcelona (UAB), Barcelona, Spain

Abstract
Safety-critical systems such as those in automotive, avionics and space, require appropriate safety measures to avoid

silent data corruption upon random hardware errors such as those caused by radiation and other types of electromagnetic
interference. Those safety measures must be able to prevent faults from causing the so-called common cause failures
(CCFs), which occur when a fault produces identical errors in redundant elements so that comparison fails to detect the
errors and a failure arises. The usual solution to avoid CCFs in CPU cores is using lockstep cores, so that two cores
execute the same flow of instructions, but with some time staggering so that their state is never identical and faults can
only lead to different errors, which are then detectable by means of comparison. This paper extends Gaisler’s RISC-V
NOEL-V core with lockstep; and presents future prospects for its use and distribution.

Introduction
The development process for safety-critical systems

makes the risk of software and systematic hardware errors
residual by design. However, random hardware faults, such
as those caused by radiation, are unavoidable and
appropriate safety measures must be deployed in
accordance with functional safety standards (e.g.,
ISO26262 in automotive), being spatial redundancy the
usual solution for error detection.

Spatial redundancy, e.g., dual (DMR) [4] or triple
modular redundancy (TMR) [3], is not enough in the case
of high-integrity safety-critical systems. Some faults may
affect clock or power signals, hence propagating the fault to
all redundant elements. If those elements are designed in a
way that their electrical state can be identical at any point
in time, they may experience identical errors, hence leading
to a failure since comparison cannot detect the errors.
These failures are known as Common Cause Failures
(CCFs), and safety standards impose that CCFs must be
prevented.

The usual way to avoid CCFs consists of using diverse
redundancy, so that common faults lead to different, hence
detectable, errors [1]. For instance, storage usually imple-
ments error correcting codes such as Single Error
Correction Double Error Detection (SECDED) codes,
where the data and the corresponding code are different
(e.g., different bit count and bit values), so that even if the
fault corrupts both the data and the code, the chances of
detecting the error are high (e.g., if up to 1 bit of the data
and 1 bit of the code are affected, detection is guaranteed
with SECDED).

In the case of computing cores, the usual solution uses
lockstep execution: two cores are coupled in a way that
only one of them is visible at user level. Yet, internally,
both cores execute the same instruction flow, but with some
time staggering so that their internal electrical state differs

at any point in time. As a result, a fault affecting both cores
cannot produce identical errors. Commercial solutions for
lockstep cores can be found from different chip vendors,
such as Infineon AURIX microcontrollers. However, to our
knowledge, open source realizations integrated in safety-
relevant SoCs are not available yet.

This paper covers this gap by developing a lockstep
version of the RISC-V based Frontgrade Gaisler NOEL-V
core, and integrating it as part of the open source SELENE
SoC [2]. In particular, we present key design choices taken
along with some necessary context. The full design will be
released open-source by the time of the summit.

SafeLS: a Lockstep NOEL-V Core
Context. In the context of safety-critical systems in the

automotive, space, and avionics domains, among others, it
is generally admissible failing to complete the execution of
an instance of a task (a.k.a. a job). This is true even if at the
highest integrity level, as long as the error is detected. This
is, for instance, the case of the braking system of a car.

Let us assume that the software function of the braking
system has to take a decision within 200ms due to safety
requirements, and it is executed every 50ms. Even if we
detect the error at the end of the execution, there is enough
time to reexecute and ensure a timely braking if the risk of
two consecutive errors can be argued to be negligible with
appropriate safety argumentation.

Design choices. Different alternatives exist to set the
sphere of replication. Some designs aim at setting the
sphere of replication at the pipeline stage level, as recently
done, for instance, for a RISC-V core [5]. Such a design
has some pros and cons. The main advantage is that errors
are detected immediately. The disadvantage is that such a
design is highly intrusive with existing cores, which
requires duplicated efforts for verification and validation.

RISC-V Summit Europe, Barcelona, 5-9th June 2023 1
This work has been partially supported by the Spanish Ministry of
Science and Innovation under grant PID2019-107255GB-C21
funded by MCIN/AEI/10.13039/501100011033

Figure 1. SafeLS architecture

Our target segment is safety-critical systems for the
automotive, space, avionics, and robotics domains, among
others, where, in general, errors can be managed at coarser
grain than pipeline stages, as discussed before. Hence,
immediate detection is not needed. As long as errors are
detected when the job of a safety-critical task completes its
execution, those errors do not lead to a failure, and safety
requirements are preserved. Thus, we opt for setting the
sphere of replication at core level, as shown in Figure 1 for
our realization of the SafeLS for the NOEL-V core.

In particular, all input signals for the NOEL-V core (e.g.,
input data, interrupts) are replicated and forwarded to the
two redundant cores. One of them (the left one in the
figure) receives those inputs immediately, whereas the
other receives those inputs with some programmable delay
(typically 2 or 3 cycles). Then, the outcomes of the left core
(e.g., output data, interrupts generated, exceptions) are
delayed by the same number of cycles as the inputs of the
right core, and then compared with the outcomes of the
right core. If no discrepancy is detected, outcomes are
delivered back to the rest of the SoC just once since,
externally, only one core is visible. This is shown in Figure
2, which depicts the schematic of the SELENE SoC
including 2 regular cores and 2 SafeLS components.

Upon a discrepancy, at least one of the outcomes is
erroneous. If DMR is employed, as usually done in
automotive systems, it is unknown which of the outcomes
is correct, if any (note that a CCF could have made all
outcomes be erroneous). Hence, an interrupt is raised so
that the error can be properly managed at system level (e.g.,
resetting the SafeLS and reexecuting the task).

Future Plans
As indicated before, a functional implementation of the

SafeLS is already in place. This design has been verified
and validated. Our plans for the near future include the
release as an open-source component, both as a standalone
module as well as integrated in the SELENE SoC. Our aim
is to keep extending such SoC with additional features until
making it be complete enough to include all features
needed in a SoC for safety-critical systems with the highest

Figure 2. SELENE SoC with 2 SafeLS and 2 regular
NOEL-V cores

integrity level in domains such as automotive, space,
railway and robotics, among others.

Also, we note that first level caches of the commercial
release of the NOEL-V core are properly protected against
single bit upsets (SBUs). The read-only instruction cache is
parity protected, so SBUs can be corrected simply by
invaliding the erroneous cache line and fetching it again
from upper levels in the memory hierarchy. Similarly, the
data cache implements a write-through policy with the L2
cache along with parity protection, so SBUs can be
detected and corrected analogously as for the instruction
cache. Hence, we plan to set the sphere of replication
including the cores without their first level caches to avoid
the duplication of those caches. We foresee this approach to
be more intrusive than our current design, but it will
provide some relevant gains in terms of power and area.

Summary
Safety-critical systems impose the use of lockstep cores

to avoid CCFs. Our work delivers SafeLS, the first open-
source RISC-V-based lockstep core based on the
commercial Gaisler’s NOEL-V and integrated into a fully-
functional SoC (the SELENE SoC). The lockstep is
validated and the implementation will be released open-
source by the time of the summit (doing it now would
violate the blindness of the submission).

References
[1] S. Alcaide et al. Software-only Diverse Redundancy on GPUs for

Autonomous Driving Platforms. In IOLTS, 2019.
[2] H2020 SELENE consortium. SELENE RISC-V open source

hardware platform. https://gitlab.com/selene-riscv-platform, 2021.
[3] X. Iturbe et al. The Arm triple core lock-step (TCLS) processor.

ACM Transactions on Computer Systems, 2019.
[4] S. S. Mukherjee et al. Detailed design and evaluation of redundant

multithreading alternatives. In ISCA, 2002.
[5] P.R. Nikiema et al. Design with low complexity fine-grained dual

core lock-step (DCLS) RISC-V processors. In SELSE, 2023.

2 RISC-V Summit Europe, Barcelona, 5-9th June 2023

	Abstract
	Introduction
	SafeLS: a Lockstep NOEL-V Core
	Future Plans
	Summary
	References

