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Abstract

Fault Tolerance represents an important area for digital applications, so it has received recent acceleration in
its development and evolution. Being able to understand how to protect electronic circuits, and in particular
microprocessors, from the different types of SEE (Single Event Error) faults, frequent and internally divisible
into other categories, is a very complex process [1], which sees the study and consequent implementation of
these techniques for the hardware/software protection of the architectures under examination, making them
more expensive and less performing than the respective non-redundant architectures. Safety and Reliability are,
therefore, two key concepts in the technological world, and RISC-V plays an interesting role in this context for
its inherent extendability and the availability of open-source microarchitecture designs.

Introduction

Among the various FT techniques developed, we find
software methodologies, Double Modular Redundancy
(DMR) and Triple Modular Redundancy (TMR) hard-
ware methodologies, temporal redundancy techniques,
and hybrid techniques based on previous ones. All
techniques in the literature protect circuits by acting
at different levels [2], with interesting research topics
related to optimization, by inserting multiple circuits
in the same circuit to obtain modular architectures
with the required trade-off between performance and
cost. RISC-V is an open-source instruction set archi-
tecture (ISA) developed and designed to be highly
flexible and customizable, allowing various implemen-
tations across various hardware platforms. It is gain-
ing increasing attention in computer architecture due
to its open nature, flexibility, and potential for low
power consumption. For the same reasons, one of
the areas where RISC-V is particularly important is
fault-tolerant computer architecture. Fault tolerance
is critical in applications where system failures, such
as space exploration, automotive systems, and military
and safety-critical applications, can have serious con-
sequences. RISC-V flexibility and customizable design
make it well-suited to developing fault-tolerant sys-
tems. It enables developers to tailor the architecture
to meet the application’s specific needs allowing the
creation of highly specialized systems that can with-
stand harsh environmental conditions and maintain
functionality even in the event of system failures. This
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work summarizes the idea presented in [3], centered
on the application of the DMR paradigm within an
Interleaved Multi-Threading (IMT) RISC-V architec-
ture, gaining the low overhead advantages of the DMR
technique, and yet overcoming the cost of saving check-
points and restoring the software state using Dynamic
TMR (DTMR) protection, which actually implies the
behavior of a TMR only in the case of error detection.
This work also demonstrates the concept of Dynamic
TMR and how it can be applied to an existing RISC-
V IMT core, opening to performance evaluation and
future fault-injection (FI) simulation campaign.

Figure 1: Klessydra-dfT03 microarchitecture. Blue ar-
rows: Normal mode; black arrows: Restore mode; brown
arrows: End Restore Phase.
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Methodologies

Klessydra-fT03 [4] [5] is a fault-tolerant RISC-V pro-
cessor core that uses an Interleaved Multi-Threading
(IMT) architecture as a basis for the implementation of
a radiation hardening technique called Buffered TMR,
using its intrinsic spatial redundancy and temporal re-
dundancy without adding additional memory locations
to save data produced by the redundant instructions.
Klessydra-fT03 is based on an open-source RISC-V
softcore family, namely Klessydra-T, which interleaves
three or more hardware threads in a round-robin fash-
ion on a four-stage in-order pipeline that is fully com-
patible with the PULPino open-source microcontroller
platform [6] [7]. The principle of the Dynamic TMR is
the implementation of a DMR instead of a triple one
without adding overhead for recovery and checkpoint-
ing mechanisms typically visible in these environments,
turning the Buffered TMR into a DMR technique to
reduce power consumption and increase speed by lever-
aging the multi-threaded architecture to use only two
replicated threads instead of three. From that idea,
we built a new core named Klessydra-dfT03 (microar-
chitecture in Figure 1), where "d" stands for dynamic,
and we introduced a single register that saves the ad-
dress of the last correct instruction and restores it in
the PC with a latency overhead of four clock cycles,
without any changes in the data memory or the Regis-
ter File [3]. We use three hardware threads, numbered
Thread 2, Thread 1, and Thread 0 (blue, red, and
green colours in Figure 1), and we leave only threads 2
and 1 active while turning off Thread 0, which we call
the auxiliary thread that is activated only in case of
fault detection, and does not take part in the pipeline’s
normal operations fetching instructions, having no dy-
namic consumption for its dedicated hardware units.
The operation are organized into three modes [3]:

• Normal or “Buffered DMR” mode: Threads
2 and 1 work in interleaved mode (blue arrows
in Figure 1), executing the same instructions and
thus implementing spatial and temporal redun-
dancy, with a buffered voting mechanism imple-
mented in the critical units PC, Register File,
Write Back unit, and Load Store Unit, that check
for the correctness of the program execution.

• Restore or Recovery mode: If the voting logic
gives a negative result due to a fault, specific
control signals named restore_ signals (Figure
1) are asserted, and the core enters the recovery
mode. Notably, a fault is always detected before
the Register File would be updated with a wrong
result using the faulted instruction. Following
the black arrows in Figure 1, the restore_ signals
activate the Restore block (black unit in Figure
1), which wakes up the auxiliary sleeping thread.

As the new thread enters the IMT pipeline, it
fetches the last successfully executed instruction
indicated by the dummy PC register (see next
section), while the other threads are stalled.

• End of Restore Phase: Once the recovered
instruction is completed, the produced result is
compared with the results previously produced
by the other two mismatching threads (brown
arrows in Figure 1), thus obtaining a majority
voting similar to a TMR system, and writing
back the correct value into the Register File. The
recovery procedure ends with the suspension of
the auxiliary Thread 0, and the loading of the
address of the next instruction in the PCs of
Threads 2 and 1, so that they restart from the
instruction following the one that faulted.

Discussion

In this work, we discussed the creation of a new
hardening-by-design DTMR technique starting from
an open-source IMT RISC-V microprocessor core, ex-
ploiting the advantages of both DMR and TMR tech-
niques obtaining a system that can dynamically switch
from one to another in case of faults [3].
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