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Fault Injection Results

Operating Principle

Starting Point
Fault Tolerance represents an important area for digital applications, as how to protect

electronic circuits from the different types of SEE (Single Event Error) faults, is a very

complex process [1]. Among the various FT techniques developed, we find software

methodologies, Double Modular Redundancy (DMR) and Triple Modular

Redundancy (TMR) hardware methodologies, temporal redundancy techniques, and

hybrid techniques based on previous ones. All techniques in the literature protect circuits

by acting at different levels [2], making them more expensive and less performing than

the respective non-redundant architectures.

Safety and Reliability are, therefore, two key concepts in the technological world, and

RISC-V plays an interesting role in this context for its inherent extensibility and the

availability of open-source microarchitecture designs.

This work summarizes the idea presented in [3], centered on the application of the DMR paradigm within an Interleaved Multi-Threading (IMT) RISC-V architecture, gaining

the low overhead advantages of the DMR technique, and yet overcoming the cost of saving checkpoints and restoring the software state using Dynamic TMR (DTMR)

protection, which actually implies the behavior of a TMR only in the case of error detection.

Operating Mode Examples

Conclusions
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The original IMT architecture natively offers spatial

redundancy, by means of replicated register file, PC

and Control/Status Registers (CSRs) to maintain the

states of the three threads being executed. Voting

among the logic signals produced by three identical

threads could be introduced in several points of the

pipeline microarchitecture. We call the proposed

paradigm Buffered TMR, defining precise

architecture modifications with general validity. The

values produced by three harts in selected

architectural units are buffered in dedicated registers

and voted at the end of each thread instruction cycle.

In this work, we discussed the creation of a new hardening-by-design Dynamic TMR concept technique starting from an open-source IMT RISC-V microprocessor core,

exploiting the advantages of both DMR and TMR techniques obtaining a system that can dynamically switch from one to another in case of faults [3].
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The principle of the Dynamic TMR is the implementation of a Double Modular Redundancy instead of a triple one without adding overhead for recovery and checkpointing

mechanisms typically visible in these environments, turning the Buffered TMR into a DMR technique to reduce power consumption and increase speed.

From that idea, we built a new core named Klessydra-dfT03, where "d" stands for dynamic, and we introduced a single register that saves the address of the last correct instruction

and restores it in the PC with a latency overhead of four clock cycles, without any changes in the data memory or the Register File [3].We use three hardware threads, numbered

Thread 2, Thread 1, and Thread 0 (blue, red, and green colors in Pipeline), and we leave only threads 2 and 1 active while turning off Thread 0 ( called the auxiliary thread )

activated only in case of fault detection, having no dynamic consumption for its dedicated hardware units. The operation are organized into three modes [3]:

The obtained RISC-V processor core, named Klessydra-dfT03 [3], possesses FT features validated by an

extensive Fault Injection simulation campaign with Single-Event-Upset (SEU) faults targeting all the

most used register bits in the architecture (see figure), compared to the non-redundant architecture

(Klessydra-T13) and the Buffered TMR version (Klessydra-fT03).
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➢ Restore or Recovery mode: If the voting logic gives a negative result due to a fault, specific control signals named restore (Pipeline)

are asserted, and the core enters the recovery mode. Notably, a fault is always detected before the Register File wrong WB. Following

the black arrows in Figure, the restore activate the Restore block (black unit in Pipeline), which wakes up the auxiliary sleeping thread.

As it enters the IMT pipeline, it fetches the last successfully executed instruction indicated by the dummy PC register, while the other

threads are stalled.

Challenge

➢ End of Restore Phase mode: Once the

recovered instruction is completed, the

produced result is compared with the results

previously produced (brown arrows in

Pipeline), thus obtaining a majority voting

similar to a TMR system, writing back the

correct value into the Register File. The

recovery procedure ends with the suspension of

the auxiliary Thread 0, and the loading of the

address of the next instruction in the PCs of

Threads 2 and 1, so that they restart from the

instruction following the faulted one.

➢ Normal or “Buffered DMR” mode: Threads 2 and 1 work in interleaved mode (blue arrows in Pipeline), executing the same instructions and thus

implementing spatial and temporal redundancy, with a buffered voting mechanism in the critical units to check for the correctness of the program execution.

Find us on Github:
• https://github.com/klessydra
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