
Self-Test Libraries for RISC-V safety-critical
applications: recent advances

M. Sonza Reorda, R. Cantoro, Josie E. Rodriguez Condia, A. Ruospo, E. Sanchez
Politecnico di Torino, DAUIN, Torino, Italy

May 7, 2023

Abstract

RISC-V adoption is rapidly expanding even to safety-critical application areas, such as automotive, space,
robotics, and health-care. In these areas, it is crucial to guarantee that the probability of a critical failure
stemming from a permanent hardware fault falls below a given threshold, often following the guidelines and
rules of standards and regulations. In this scenario, possible solutions must combine functional safety goals
with constraints related for example to the hardware and performance overhead, the flexibility, the ease of
adoption. In the last decade, Self-Test Libraries (STLs) became a commonly adopted solution widely supported by
semiconductor, IP and EDA companies, allowing system companies to deploy effective in-field test mechanisms
able to detect a high percentage of permanent hardware faults arising during the operational phase (e.g., due
to aging). This paper summarizes the latest advancements in the area of STLs for RISC-V architectures,
emphasizing the advantages stemming under this perspective from the open instruction set architecture.

Introduction

Among the different areas where RISC-V is expected
to play a major role is the one of safety-critical applica-
tions, such as automotive, space, robotics, healthcare.
In these areas, it is crucial to guarantee that the prob-
ability of failures stemming from permanent hardware
faults is kept under a defined threshold. To achieve
this goal, different solutions can be adopted, includ-
ing the introduction of fault-tolerant solutions (e.g.,
ECCs, lockstep, TMR) [1]. However, fault-tolerant
approaches are sometimes too expensive in terms of
hardware cost, and may lack in flexibility, being im-
plemented in hardware. In some cases, the system
company would prefer using the same CPU core for
different applications having different levels of func-
tional safety (ASILs in ISO26262 nomenclature): a
fully protected CPU core could be unsuitable to cover
this range of requirements. For this purpose, adopting
a mix of safety mechanisms that can be arranged and
tuned at system level would be preferable.

In the last decade, Self-Test Libraries (STLs) be-
came widely adopted in the area: the basic idea is that
the semiconductor or IP company develops a set of
software test procedures (often at the assembly level).
The system company includes them in the application
and system software, which launches their execution
with the due frequency, checking whether the produced
results match the expected ones. In the negative case,
a permanent hardware fault is detected, and the appli-
cation can react accordingly before the fault produces
any major consequence. STLs are currently delivered
by many semiconductor and IP companies together
with their CPU cores, including ARM, Synopsys, NXP,

Infineon, STMicroelectronics [2]. The list of permanent
faults detected by a given STL is typically assessed
by the semiconductor or IP company by performing
its functional fault simulation with respect to struc-
tural fault models (such as stuck at or transition delay
faults). In this way, the STL can be delivered to the
system company without disclosing any proprietary
information about the core. The STL assessment is
done resorting to commercial tools such as Z01X by
Synopsys or Xcelium by Cadence, which belong to
a new generation of EDA tools targeting functional
safety.

Combining STLs with other safety mechanisms, and
tuning their frequency of activation, the system com-
pany can achieve the desired fault coverage (FC) (Diag-
nostic Coverage in the ISO26262 nomenclature) with-
out modifying the CPU hardware and avoiding ex-
pensive hardware fault-tolerant solutions. Moreover,
since STLs are executed at full speed, they can detect
delay defects as well, which are known to be the prime
consequence of aging. Finally, STL execution can be
split in chunks which can easily accommodate into
the idle times of the application, thus resulting in a
less invasive solution. On the other side, STLs are
expensive to develop, since their generation mainly
stems from a manual effort, although guided by sev-
eral test algorithms published in the literature in the
last years. The goal of this paper is to underline how
the characteristics of the RISC-V open instruction set
architecture (ISA) may ideally support the adoption of
STLs for safety-critical applications. In fact, it limits
the cost for their generation, allows their re-use across
different cores, and eases the introduction of ad hoc
instructions and hardware for STL support.

RISC-V Summit Europe, Barcelona, 5-9th June 2023 1



STL generation and re-use

Several recent works demonstrated that suitably writ-
ten STLs for RISC-V cores can detect a high percent-
age of stuck-at [3], transition [4] and path delay faults
[5]. Moreover, the RISC-V open ISA is ideally suited
to make STL generation as much independent as pos-
sible from the specific core implementation, allowing
the adoption of formal techniques to speed up the gen-
eration (thus limiting the required manual effort) and
easing the STL re-use across different cores. In Table
1, we show the results collected via fault simulation
on two RISC-V cores – namely, the CPU modules of
the PULP ibex and PULP ri5cy. Both cores have
been synthesized with the Silvaco 45nm OpenCell li-
brary. The two STLs have been manually crafted,
making use of systematic algorithms for specific mod-
ules (e.g., register file), while exploiting the vectors
from an automatic test patterns generation (ATPG)
tool for generating the instructions for some others
(e.g., ALU). Noteworthy, the FC values reported in
the table do not take into consideration the impact
of faults that cannot produce any failure in the mis-
sion application (safe faults according to the ISO26262
nomenclature). The number of such faults is typically
considerable, and evaluated in post-processing by as-
sessing the behavior of the mission application. Hence,
the actual diagnostic coverage figures for the STLs
reported in Table 1 are expected to be much higher
than pure FCs. Given the vast amount of material
available for the RISC-V architecture, STLs can be
in part synthesized starting from existing code (e.g.,
developed for verification purposes [3]). We are cur-
rently working on the development of tools to support
test engineers in STL generation (e.g., identifying the
parts of the code that require additional instructions
to allow the detection of the fault effects).

Ad hoc hardware for STL support

The flexibility characterizing the RISC-V ISA by its
open ISA allows also for the inclusion of new instruc-
tions aimed at supporting STLs, increasing their fault
detection capabilities and reducing their duration. As
an example, we propose to add in the RISC-V architec-
ture an ad hoc module able to compute the signature
out of all the values flowing on the data bus during
a given period. In this way, it is possible to limit
the amount of memory required to store the results
produced by each STL, and speed-up their execution
(implementing in hardware a mechanism which is of-
ten implemented in software). To give an idea on the
impact of hardware modules specifically added for en-
hancing the fault observability, we recently conducted
a study to evaluate the FC gain given by the possibil-
ity of tracing the content of specific flip-flops of the

Table 1: Fault Simulation results on two RISC-V CPUs

RISC-V Core Faults Duration
[Clock Cycles]

Stuck-at Fault
Coverage [%]

ibex 118,346 109,294 82.59
ri5cy 159,326 80,455 82.18

designs. Our results conducted on the ri5cy processor
shown that a 128-bit trace buffer able to dynamically
select a subset of flip-flops highly increases the FC;
in the worst case scenario, we tested 99.15% of the
transition delay and 98.75% of the stuck-at faults that
were masked and not propagated to observable points
by original STLs.

Conclusions

STLs are widely used as a safety mechanism to be
combined with others in order to match the strict
requirements existing in many applications areas where
reliability and safety are major concerns. RISC-V
allows to support the generation and usage of STLs
leveraging on its open ISA. This paper summarized the
advantages stemming from this characteristic. Work
is currently being done by both the academic and
the industrial community to improve the available
STLs for RISC-V architectures in terms of achieved
fault coverage, targeted fault models, and required
execution time.

Acknowledgment

This work was partially supported by the Italian ICSC
National Research Centre for High Performance Com-
puting, Big Data and Quantum Computing in the
frame of the NextGenerationEU program.

References

[1] Fraunhofer IPMS. “RISC-V processor core for functional
safety”. In: White paper. 2021.

[2] Paolo Bernardi et al. “Development Flow for On-Line
Core Self-Test of Automotive Microcontrollers”. In: IEEE
Transactions on Computers 65.3 (2016), pp. 744–754. doi:
10.1109/TC.2015.2498546.

[3] Annachiara Ruospo et al. “On-line Testing for Autonomous
Systems driven by RISC-V Processor Design Verification”.
In: 2019 IEEE International Symposium on Defect and
Fault Tolerance in VLSI and Nanotechnology Systems
(DFT). 2019, pp. 1–6. doi: 10.1109/DFT.2019.8875345.

[4] Riccardo Cantoro et al. “Effective techniques for auto-
matically improving the transition delay fault coverage of
Self-Test Libraries”. In: 2022 IEEE European Test Sympo-
sium (ETS). 2022, pp. 1–2. doi: 10.1109/ETS54262.2022.
9810392.

[5] Riccardo Cantoro et al. “New Perspectives on Core In-
field Path Delay Test”. In: 2020 IEEE International Test
Conference (ITC). 2020, pp. 1–5. doi: 10.1109/ITC44778.
2020.9325260.

2 RISC-V Summit Europe, Barcelona, 5-9th June 2023

https://doi.org/10.1109/TC.2015.2498546
https://doi.org/10.1109/DFT.2019.8875345
https://doi.org/10.1109/ETS54262.2022.9810392
https://doi.org/10.1109/ETS54262.2022.9810392
https://doi.org/10.1109/ITC44778.2020.9325260
https://doi.org/10.1109/ITC44778.2020.9325260

	Introduction
	STL generation and re-use
	Ad hoc hardware for STL support
	Conclusions

