
A gem5-based CVA6 Framework for Microarchitectural
Pathfinding

Pierre Ravenel1,2, Arthur Perais2, Benoît de Dinechin1 and Frédéric Pétrot2 ∗

1Kalray, 2Univ. Grenoble Alpes, CNRS, Grenoble INP†, TIMA

Abstract

Succesfully designing a well-balanced general purpose processor targeting an ASIC implementation is an arduous task. As a
result, software timing models are generally developped to enable fast design space exploration in the pathfinding phase.
Those models are later tightly correlated to RTL as it becomes available, but can still provide valuable insight late in the
design phase as they can simulate large workloads and provide non-intrusive access to internal information. In this paper, we
leverage the gem5 timing simulator infrastructure to provide a fast timing simulation environment to drive microarchitectural
improvements for the risc-v CVA6 processor. We also depict a correlation flow to ensure that the timing performance model
keeps projecting meaningful performance numbers.

Introduction & Motivation
The use of current time computers to simulate future com-
puters has a necessity since the infancy of computer design,
see e.g. [1]. Design decisions cover very different matters,
from low level implementation details to instruction set
architecture (ISA) definition to system-wide architecture
dimensioning. In this work we are interested in evaluating
microarchitectural choices.

Designers rely on software models to validate the func-
tionality and performance of general purpose processors.
Several models are usually maintained. Typical frameworks
feature three levels of abstraction: i) The RTL itself, which
accurately describes the chip but is excruciatingly slow to
simulate ii) A functional simulator which is not actually
tied to the design but is helpful in developping low level
software in advance and iii) A C/C++ performance model
that provides agility through higher abstraction and simula-
tion speed than RTL yet reasonable timing accuracy. The
performance model is the obvious tool of the pathfinding
phase of a project, when novel functionalities are studied
and introduced in the microarchitecture.

Performance models are hard to develop and maintain,
and are often kept in-house by processor makers. As a
result, academia relies on a few projects to project processor
performance, with the understanding that models may be
quite far from state of the art [2, 3]. While this allows
many researchers to use the same tools, there are no readily
available performance models for existing chips.

Given the liveliness of the risc-v ecosystem, one can ask
how the performance models used to develop open risc-v
chips should be made available. We argue that ideally, the
risc-v community should leverage existing open source
projects to provide a one-stop infrastructure able to model
specific designs. To that extent, this paper walks through
the process of building an accurate CVA6 model within
∗Corresponding author: pierre.ravenel@kalray.eu
†Institute of Engineering Univ. Grenoble Alpes

the gem5 [4] infrastructure. The CVA6 was chosen for
two reasons. First, it is now maintained by the OpenHW
Group, suggesting a reasonably long support ahead. Second,
it is quite simple and has low performance, making it a
prime candidate for revisiting possible microarchitectural
improvements using a high level model. gem5 was chosen
as it is the de facto standard in the computer architecture
community.

In this paper, we introduce a gem5 performance model
of the CVA6, propose a correlation suite and calibration
methodology to ensure the CVA6 model accuracy, and
provide future directions for improving the CVA6 using our
framework.

Experimental Methodology & Results
A performance model should provide two things. The first
is statistics on the microarchitecture, such as Instruction per
Cycle (IPC). The second is ease of modification, to allow
evaluation of design decisions. Such a model should ensure
performance correlation, but also some amount of code
correlation, i.e. similarity between hardware objects and
performance model objects. This is a desirable property
because a change in the performance model will lead to a
related change in the RTL.

Design of a Performance Model in gem5
gem5 provides an event-driven simulation environment
containing numerous risc-v-compliant microarchitectural
and architectural components. In gem5, the ISA model is
decoupled from the microarchitecture model. This means
that a change to the ISA usually results in minor changes to
the processor model code. The counterpart is a rigidity in
the programming of performance models. Given its wide
use, it is therefore a good candidate for implementing a
CVA6 performance model.

RISC-V Summit Europe, Barcelona, 5-9th June 2023 1

mailto:pierre.ravenel@kalray.eu


Model Accuracy To design a performance model, one
must first define the expected accuracy. The idea is to find a
compromise between cycle accuracy and microarchitectural
abstraction level. Indeed, it is desirable not to model all
hardware components, but rather a functional representation
of the main blocks. Thus, rather than realizing a strict cycle-
accurate simulator, it is a matter of specifying components
with relevant boundaries and their associated interface and
timing.

Performance Modeling The construction of a model is
done iteratively in two steps: Modeling then validation. We
call model validation the fact of verifying that the execution
times of the programs on the model are close to those
provided by the RTL.

As the RTL of CVA6 already exists, it is question of
modeling it from the elementary bricks of gem5. The
implemented method is as follows:
1. System modeling. It is necessary to have the same

memory system and the same peripherals. Emphasis is
put on correctly modelling latency and bandwidth.

2. Identification and modeling of memories and flip-flops
in the processor, with correct datapaths width.

3. Front end modeling. It is necessary to identify and model
the resources of the frontend, e.g. branch predictor,
Branch Target Buffer (BTB), ...

4. Back end modeling. This involves identifying the func-
tional units as well as their latency and throughput. The
critical part is the identification of how the instructions
are issued to the different functional units.

Validation Methodology
Once the model has been built, it needs to be validated.
To do this, the use of micro-benchmarks with asymptotic
behavior allows to isolate processor bottlenecks [5]. A first
set of programs evaluates the performance of the frontend.
• Independent instruction sequences are used to measure

front-end throughput.
• Miss-generating jumps validate the instruction cache.

A second set of programs evaluates the backend by
placing all test instructions in the instruction cache. It is
then possible to evaluate:
• Latency and throughput of the functional units,
• Penalty induced by Read-after-Write, Write-after-Write

and Write-after-Read dependencies,
• Latency and throughput of the data/memory cache.

Validation results
To validate our performance model, we need to compare the
execution times obtained using the performance model with
those of the RTL obtained by simulation or emulation. To
that end we use two different benchmarks: riscv-test, that
is unit-testing oriented, and Polybench [6], that is compiler
optimization oriented. Figures 1 and 2 plot the relative

standard deviation (RSD) between the measured IPC of
gem5 and CVA6.

−1.0 −0.5 0.0 0.5 1.0

Gem5, Cva6 IPC RSD

0

5

10

F
re

q
u

en
cy

IPC RSD distribution
µ = −0.03 and ρ = 0.09

0.0 0.2 0.4 0.6 0.8 1.0

Cva6 IPC

0

5

10

15

20

N
u

m
b

er
o
f

te
st

s

Reference IPC distribution

Figure 1: Riscv-test IPC correlation

−1.0 −0.5 0.0 0.5 1.0

Gem5, Cva6 IPC RSD

0

5

10

15

F
re

q
u

en
cy

IPC RSD distribution
µ = −0.01 and ρ = 0.02

0.0 0.2 0.4 0.6 0.8 1.0

Cva6 IPC

0

2

4

6

N
u

m
b

er
o
f

te
st

s

Reference IPC distribution

Figure 2: Polybench IPC correlation

The variation in the IPC measured between the gem5
model and the CVA6 for the different benchmarks is often
close to 0, indicating high correlation.

Summary & Conclusion
This paper presents the method used to build a performance
model and validate it from an RTL design. The constructed
CVA6 performance model highlights design bottlenecks
while facilitating design exploration. With a bottom-up
approach, we identified performance losses in corner cases.
With a top-down approach, the idea is to improve the
frontend to increase throughput under the constraint of
supporting risc-v compressed instructions. Also, working
on CVA6 memory accesses should greatly improve backend
performance.

References
[1] M Lehman, Rayna Eshed, and Z Netter. “The checking of computer

logic by simulation on a computer”. In: The Computer Journal 6.2
(1963), pp. 154–162.

[2] Tony Nowatzki et al. “Architectural simulators considered harmful”.
In: IEEE Micro 35.6 (2015), pp. 4–12.

[3] Anastasiia Butko et al. “Accuracy evaluation of gem5 simulator
system”. In: 7th International workshop on reconfigurable and
communication-centric systems-on-chip (ReCoSoC). IEEE. 2012,
pp. 1–7.

[4] Jason Lowe-Power et al. “The gem5 Simulator: Version 20.0+”. In:
CoRR abs/2007.03152 (2020). arXiv: 2007.03152. url: https:
//arxiv.org/abs/2007.03152.

[5] Matthew Walker et al. “Hardware-validated CPU performance
and energy modelling”. In: IEEE International Symposium on
Performance Analysis of Systems and Software. 2018, pp. 44–53.

[6] Louis-Noël Pouchet and Tomofumi Yuki. Polybench/C 4.1. http:
//polybench.sourceforge.net. 2015.

2 RISC-V Summit Europe, Barcelona, 5-9th June 2023

https://arxiv.org/abs/2007.03152
https://arxiv.org/abs/2007.03152
https://arxiv.org/abs/2007.03152
http://polybench.sourceforge.net
http://polybench.sourceforge.net

	Introduction & Motivation
	Experimental Methodology & Results
	Design of a Performance Model in gem5
	Model Accuracy
	Performance Modeling

	Validation Methodology
	Validation results

	Summary & Conclusion

