Providing QoS policies
for mixed-criticality applications
on RISC-V based MPSoCs

Rail de la Cruz'* Gonzalo Salinas!, Alejandro Garcial

1Connected & Real-Time Systems Group, Collins Aerospace Applied Research & Technology, Ireland

Abstract

More integrated systems come at the price of harder predictability and determinism. This is specially true on
MPSoCs with myriad shared resources that can behave as interference channels thus creating contention and non-
deterministic behaviour. Variability makes MPSoCs very hard and expensive to certify for safety-critical systems.
In order to ease the certification process and guarantee tasks’ timeliness, drastic measures are traditionally
enforced in the system configuration. Some of these include the deactivation of resources to avoid contention
scenarios, synchronization of core’s partitions using ARINC-653 schedulers and long provisioning of budget times
increasing deadlines. These mitigation strategies impact drastically on the performance of the system, either
underutilizing most of the advanced MPSoCs capabilities or reducing the integration level of mized-criticality
applications. This work proposes novel QoS strategies to enforce determinism of mized-criticality applications
while performance is preserved. The infrastructure has been successfully evaluated on a customized quad-core
RISC-V RocketChip architecture using high assurance level applications with stringent deadlines.

Introduction

Aerospace industry is evolving towards better SWaP-C
factor computing systems due to the trend of more
electric-powered autonomous and intelligent systems.
These systems will require additional computing power
to run simultaneously multiple, complex and Al-based
applications on the same integration system [1]. Semi-
conductor manufacturers are facing performance lim-
itations through parallelization strategies with the
integration of heterogeneous architectures in complex
Multiprocessors Systems on Chip (MPSoCs). In ad-
dition, manufacturers are also ceasing the single-core
production and hence there is a current deprecation
and discontinuation of these type of systems. This
trend will necessarily require the adaptation of the
current safety-critical systems (SCS) to MPSoCs to
ensure long-term operation and maintenance.
Multicore architectures are well-known to leverage
the computing power for general purpose applications
and high performance computing. However, when it
comes to critical systems their predictability is at risk
due to the appearance of interference channels and
contention in the form of execution delays. Interference
channels appear when shared resources do not provide
enough resources to handle concurrent requests from
different masters initiators (e.g. cores, DMAs or PCle
devices). Contention occurs when requests have to
be serialized, queued or stored in order to be served.
In this context, masters may need to wait contenders’
requests to be completed before their own get served.

*Corresponding author: raul.delacruz@collins.com

RISC-V Summit Europe, Barcelona, 5-9th June 2023

Objectives

This work aims at proposing QoS strategies on MP-
SoCs hosting mixed-criticality applications to miti-
gate its non-deterministic behavior and guarding the
system performance. This objective is achieved by
two cornerstone efforts. Firstly, the integration us-
ing Chipyard of a custom HW infrastructure on a
RISC-V RocketChip architecture that measures accu-
rately the contention produced in the TileLink inter-
connect [2]. And secondly, deploying QoS policies at
SW level orchestrating the custom HW to enable a
flexible scheduling scheme and avoiding the traditional
and rigid ARINC-653 scheme. Our full QoS stack
accommodates mixed-criticality applications with dif-
ferent periodicities and assurance levels on the same
SoC. Although the QoS mechanism has been tested
on a 4-core RISC-V bare-metal implementation, the
approach is fully agnostic and could be deployed on
top of any HyperVisor/RTOS.

QoS stack to mitigate contention

Contention is detrimental to the determinism of the
system leading to very pessimistic WCETs for each
executed task. In a mixed-criticality environment, an
unanticipated contention from a low assurance level
application can produce a high critical application to
overrun its WCET and miss its deadline. Hence, it
is imperative to create methodologies to measure and
and limit the tasks’ contention at runtime whenever
safe bounds are exceeded. The methodology applied


mailto:raul.delacruz@collins.com

to derive our QoS infrastructure is based on:

Identify the interference channels. (HW)

Deploy contention assessment modules. (HW)
Assign contention quotas based on tasks’ profiles
and priorities. (SW)

Devise QoS policies for exhausted quotas accord-
ing to the applications’ criticality level. (SW)

Identifying interference channels. First, the in-
terference channels that can create contention need
to be assessed. Full visibility and understanding of
the microarchitecture’s behavior is a must. This is
usually challenging when COTS are used as many IPs
are kept undocumented by manufacturers and NDAs
need to be signed to overcome this problem. In this
regard, the use of RocketChip architecture and open
standards such as RISC-V grant us full visibility and
control of the whole hardware architecture.

The assessment of our custom microarchitecture
drove our attention on the contention produced ac-
cessing the main memory, composed of a scratchpad.
This scratchpad is accessed by cores using a TileLink
interconnect that act as a crossbar and therefore as
a potential bottleneck to concurrent requests. After
obtaining all the microarchitectural information and
how requests are managed through the TileLink stan-
dard, the next step was to design a HW module able
to monitor and signal when contention happens, which
master is producing it (contender) and who needs to
wait to complete the transaction (contended).

Contention assessment module. A specific con-
tention assessment module (CSS) was designed in Ver-
ilog and integrated in Chipyard to sniff the transfers
going through the interconnect and derive the con-
tention cycles according to the information provided
by TileLink’s signals.

The module is connected to each core tile acting
as master device, sniffing core requests and creating
N? contention signals (Cx_y) being N the number
of masters. Our microarchitecture includes 4 cores,
so a total of 16 signals named according to the cores
producing contention exist. Hence, C'1 2 represents
contention produced over core 1 due to core 2, whereas
C0_0 is the contention of the core zero over itself due
to a sustained burst of transactions.

Once that the CCS module was integrated, a spe-
cialized IP to count the contention events and pro-
vide quota reservations was required. To reduce the
implementation effort, an open source module called
SafeSU [3, 4] and developed in the SELENE project [5]
was used for this purpose. This is a generic statisti-
cal module designed for measuring different types of
events, supporting both contention assessment signals
and PMU events. The SafeSU provides the following
HW capabilities:

e A programmable crossbar that routes desired con-
tention signals to event counters.

e Set of weighted counters that track the occur-
rences of user-defined events on every cycle.

e MCCUs that allow to assign group quotas and
trigger interrupts when expired to the PLIC.

QoS policies. Finally, the whole system is orches-
trated by the SW layer that configures and manages
the QoS policies for our mechanism. This task is per-
formed by a dedicated manager core that arranges
several quotas in the SafeSU module based on offline
timing analysis of the applications being executed.

Our SW layer is in charge of several tasks. a) Config-
ure the SafeSU crossbar and MCCUs to account for the
cycles that each Core has been contended (provided
by CSS) and raise an interrupt given a combined set of
quotas. b) Reroute external MCCUs’ interrupts to spe-
cific cores to take countermeasures based on mitigation
policies. c¢) Issue IPIs to resume cores’ execution at
each quantum slice. d) And finally, implement strate-
gies for the renewal of quotas reconfiguring SafeSU
module periodically.

Evaluation

Our QoS infrastructure has been successfully evaluated
on three different use cases, demonstrating that the
combination of the CCS and SafeSU modules and our
QoS policies are a feasible and resilient approach to
provide deterministic behaviour in a mixed-criticality
system with very stringent deadlines. This approach
certainly proved not only that mitigates the contention
but also that can provide safety measures for complex
scheduling configurations with tasks running at dif-
ferent periods, thus avoiding the strict ARINC-653
scheme.

References

[1] Woodrow Bellamy. “Avionics Industry Advances Toward
DAL A Multicore Adoption”. In: aviationtoday.com (2020).

[2] SiFive. TileLink specification. https : // starfivetech .
com/uploads/tilelink_spec_1.8.1.pdf.

[3] Guillem Cabo et al. “SafeSU: an Extended Statistics Unit
for Multicore Timing Interference”. In: 2021 IEEE Euro-
pean Test Symposium (ETS). 2021, pp. 1-4. por: 10.1109/
ETS50041.2021.9465444.

[4] Pablo Andreu et al. End-to-End QoS for the Open Source
Safety-Relevant RISC-V SELENE Platform. 2022. por:
10.48550/ARXIV.2210.04683.

[5] H2020 SELENE consortium. SELENE RISC-V open
source hardware platform. https://gitlab.com/selene-
riscv-platform. 2021.

RISC-V Summit Europe, Barcelona, 5-9th June 2023


https://starfivetech.com/uploads/tilelink_spec_1.8.1.pdf
https://starfivetech.com/uploads/tilelink_spec_1.8.1.pdf
https://doi.org/10.1109/ETS50041.2021.9465444
https://doi.org/10.1109/ETS50041.2021.9465444
https://doi.org/10.48550/ARXIV.2210.04683
https://gitlab.com/selene-riscv-platform
https://gitlab.com/selene-riscv-platform

	Introduction
	Objectives

	QoS stack to mitigate contention
	Identifying interference channels.
	Contention assessment module.
	QoS policies.


	Evaluation

