
V
is

io
n

 &
 V

al
u

e
M

et
h

o
d

o
lo

gy

References

© 2023 Collins Aerospace. | Collins Aerospace Proprietary. | IE Export Classification: UNCTD - CLS25355816.

Providing QoS policies for
mixed-criticality applications
on RISC-V based MPSoCs
Raúl de la Cruz* (raul.delacruz@collins.com), Gonzalo Salinas and Alejandro G. Gener

Connected & Real-time Systems Group, Collins Aerospace Applied Research & Technology, Ireland

Business Need:

• MPSoCs are required to adopt autonomous systems
but its timing behavior is highly non-deterministic
and hinders certification process [1].

• Reduce time to market providing evidence in a
faster way to the certification authorities.

Technical Challenge:

• Avoid deactivation of resources or cores to avoid
contention scenarios and ease certification.

• Escape from long provisioning in RTOS/HV and rigid
schedulers (ARINC-653) to guarantee timeliness.

• Boost mixed-criticality performance on MPSoCs.

QoS Methodology Evaluation on Flexible Scheduler

RISC-V testbed architecture
• 4-cores RocketChip deployed on Zynq UltraScale+
• I-cache no coherent and main memory (scratchpad) as shared resource
• TL-UL and TL-UH as Xbar protocols (single and burst transactions) [2]
Types of contention identified
• Serialization of messages on TileLink crossbar (buffered/enqueued)
• Locking of scratchpad on read burst transactions (multi clock cycle)

Flexible scheduling - tasks are scheduled at different frequencies
• Contention Assessment sniffs TileLink traffic and MCCU accounts contention cycles raising interrupts
• Manager initializes policy quotas and reroutes SUSPEND interrupts to contending cores (RUNNING)
• QoS TimeSlice quotas are renewed periodically waking up SUSPENDED cores (CLINT & IPI interrupts)

Benefits of the QoS Policies proposed
1. Contention cycle-accurate with visibility of SoC behavior
2. Agnostic QoS mechanism for multiple cores and HV/RTOS
3. Advanced QoS policies to guarantee deadline compliance
4. Enhanced flexibility over ARINC-653 rigid static schedule
5. Flexible scheduler hosting mixed-criticality apps and periods
6. Mitigations for DoS attacks that cause contention on ICh

“For both cases, we collect memory access time and application’s execution time while one core executes the
benchmark and others execute a stressing benchmark over the same DRAM controller.” (FAA TC-16/51, p. 48)

QoS on custom Multicore uarch
• Specialized stack to assess the

contention at runtime and stop
contenders when quota exceeded

How is it achieved?
• Contention Assessment module to

spot master creating contention.
• SafeUnit[3,4] to account contention

and maximum quota assignment
• SW policies to enforce QoS means

over a mixed-criticality system.

HW infrastructure

SW layer for Mixed-criticality

RISC-V Summit Europe

5-9 June 2023, Barcelona, Spain

[1] Woodrow Bellamy. “Avionics Industry Advances Toward DAL A Multicore Adoption”. In: aviationtoday.com (2020).
[2] SiFive. TileLink specification. https://starfivetech.com/uploads/tilelink_spec_1.8.1.pdf.
[3] Guillem Cabo et al. “SafeSU: an Extended Statistics Unit for Multicore Timing Interference”. In: 2021 IEEE European Test Symposium (ETS). 2021. DOI: 10.1109/ETS50041.2021.9465444.
[4] Pablo Andreu et al. End-to-End QoS for the Open Source Safety-Relevant RISC-V SELENE Platform. 2022. DOI:10.48550/ARXIV.2210.04683.
[5] H2020 SELENE consortium. SELENE RISC-V open source hardware platform. https://gitlab.com/seleneriscv-platform. 2021.

Usecase objectives
• Implement a mixed-criticality system with tasks released at specific rates

(periods) with stringent deadlines. Each DAL core has different periods and
deadlines for their major frames, breaking the strict ARINC-653 alignment.

• Demonstrate that the QoS Time Slice policy can provide a deterministic
behaviour for very high assurance level applications (DAL-A/B) that run
periodically providing very high performance.

Software architecture
• Core 0: DAL-A high priority app with strong deadline of 10ms (100Hz).
• Core 1: DAL-B app (BCET ~18ms) with deadline of 20ms (50Hz).
• Core 2: DAL-E app acting as aggressive contender with BCET ~70ms (4Hz).
• Core 3: Manager core that manages QoS Timeslice policy.
• Scheduler is run for 1 sec (TimeSlice frequency = 1ms – 31,250 cycles)

Multiple chained and hierarchical quotas
• MCCU0: Contention over C0 (C0_1 + C0_2) stops CORE1
• MCCU1: Contention over C0 (C0_1 + C0_2) stops CORE2
• MCCU2: Contention over C1 (C1_2) stops CORE2

Profile Core 0 Core 1 Core 2

Workload ub_complex_1 ub_complex_2 ubenchmark2

Parameters NREPS=8 NREPS=9 NREPS=100

Elapsed time (SOLO) 8.13ms 18.65ms 67.60ms

PROC_CYCLES 254141 582705 2112463

INST_RETIRED 92445 82501 253629

INT_STORE_INST_RET 4072 0 28160

INT_LOAD_INST_RET 3312 7 56327

DATA_CACHE_MISS 7383 2906 84486

INS_CACHE_MISS 3062 29336 112645

Deadline 10.00ms 20.00ms 250.00ms

Grace time 1.87ms 1.35ms 182.40ms

Major Frames 100 periods 50 periods 4 periods

Isolation (SOLO)

MCCUs Event 1 Event 2 Quota Max delay Suspends Exhausted

MCCU 0 C0_1 C0_2 6500 cycles 0.208ms CORE 1 42 times

MCCU 1 C0_1 C0_2 2300 cycles 0.074ms CORE 2 946 times

MCCU 2 C1_2 LOW 2800 cycles 0.090ms CORE 2 38 times

MCCU 3 LOW LOW 0 cycles 0.000ms NONE 0 times

MCCU_QUOTAS & Xbar Configuration

~20% of TimeSlice

quota (31,250 cycles)

Trace of the actual scheduling disabling and enabling QoS TimeSlice policy

Timing analysis disabling and enabling QoS TimeSlice policy

Improvements to foster mitigation response and performance
1. Include Timeslice mechanism on HW providing frequency concept
2. Periodic renewal of core quotas after timeslice expiration
3. Interrupts to suspend & resume cores (INT_SUSPEND, INT_RESUME)

ConclusionsSW stack designed to provide high level of contention mitigation
• QoS policy based on Timeslices (q) providing reactive and sensitive response
• Cores assigned to criticality levels (DALs) 𝑎

𝑖
𝑑𝑎𝑙⊆ 𝜏1, … , 𝜏𝑛 / 𝑐𝑗 ↦ 𝑎1

𝑑𝑎𝑙 , … , 𝑎𝑚
𝑑𝑎𝑙

• Monitoring resets policies resuming halted cores after quota exhaustion
• Chained-rule quota mechanism where rules are triggered based on DALs

IChs detected after
contention assessment
of RISC-V uArchitecture

HW infrastructure with
Contention Assessment
module and SafeUnit

	Slide 1

