
Hardware-Assisted Virtual IOMMU
with Nested Translation

Siqi Zhao1

1T-Head Semiconductor Co., Ltd.

Abstract

Passthrough devices is the default option for high-performance I/O for virtual machines. However, a virtual
machine cannot efficiently nor transparently take advantage of a virtual IOMMU to manage device assigned to
it, due to the fact that existing solutions for virtual IOMMU is based on emulation or paravirtualization. This
extended abstract describes a hardware-assisted design for providing efficient and transparent virtual IOMMU
for virtual machines.

Introduction

IOMMU is a fundamental infrastructural component
used in virtualization application scenarios such as
cloud servers, edge servers or home servers. In such
scenarios, the I/O performance of virtual machines
cannot match that of the bare-metal machines since
I/O devices are typically emulated or paravirtualizaed.
To improve I/O performance, physical devices can be
directly assigned to virtual machines with assistance of
an IOMMU; a technique commonly known as ’device
passthrough’. The passthrough devices can be directly
accessed by the guest kernel with Guest Physical Ad-
dress (GPA). However, existing IOMMU infrastructure
provides limited support for virtual IOMMU. The vir-
tual machine cannot efficiently take advantage of the
benefits of an IOMMU, albeit being virtual, such as
non-contiguous I/O buffer, restricted memory range
accessible by the device or user-mode direct access
inside the virtual machine.
The existing IOMMU infrastructure relies on two

approaches to provide virtual IOMMU support to
virtual machines. The first approach is emulation and
the second approach is paravirtualization.
In the emulation approach, the host relies on the

traps generated by guest’s access to the MMIO range
occupied by the virtual IOMMU to trigger the execu-
tion of the emulation logic (typically within QEMU)
for the virtual IOMMU. The emulation logic maintains
the necessary set of hardware state expected by the
guest’s IOMMU driver. As an important step, the
emulation logic needs to track the modification of the
mappings performed by the guest’s driver in order to
combine the mappings with the second stage address
translation mappings configured by the host.

The reason for this tracking and combination is that
there is only one stage of translation in the hardware
IOMMU. Specifically, the emulation logic needs to ob-
tain the GPA for which a guest virtual address (GVA)
is mapped to by walking the guest’s I/O translation

tables, then obtain the host physical address (HPA)
for which the GPA is mapped to by walking the host’s
second stage translation table, before finally fill the
mapping from the GVA to HPA into the one stage of
translation tables used by hardware. The emulation
process is involved and lengthy. Every time the guest
modifies the mapping, the host undergoes this process.
Figure 1 illustrates this architecture. Certain archi-
tecture supports nested translation, however, the first
stage of translation tables are still configured by the
host, the trapping and emulation is unchanged.

Tbl BasePtr
PT Base Ptr

IOMMU HW

VM

GVA->HPA

Configured by QEMU

Emulated Virtual IOMMU

QEMU

IOMMU Emulation

Kernel

MMIO Emulation

Virtual IOMMU

Host

Kernel

IO PT
GVA->GPA

Native IOMMU Driver

Tbl BasePtr

Figure 1: Emulated Virtual IOMMU

In the paravirtualization approach, i.e. virtio
based virtual IOMMU, the hardware programming
model of the IOMMU is replaced by a simple software-
defined interface. Instead of trapping, the guest ex-
plicitly communicates the mappings that it requires
to the host via the interface. The host then walks the
second stage of page tables to obtain the GPA to HPA
mappings, before finally configure the combined map-
ping in the translation tables used by hardware. This
approach does not necessarily involve the trapping
and emulation, however, it requires explicit support

RISC-V Summit Europe, Barcelona, 5-9th June 2023 1



from both the guest and host. Figure 2 illustrates this
architecture.

Tbl BasePtr
PT Base Ptr

IOMMU HW

VM

GVA->HPA

Para-virtual IOMMU

QEMU

Para-virtual IOMMU Backend

Host

Kernel

IO Mappings
GVA->GPA

Para-virtual IOMMU Frontend

Figure 2: Para-virtual IOMMU

The Design of Hardware-Assisted
Virtual IOMMU

In this work, we propose an IOMMU architecture that
is capable of directly exposing the hardware IOMMU
to the virtual machines. The guest is presented with
an IOMMU that is identical to the physical IOMMU,
therefore, it can directly reuse the driver written for
the host. Furthermore the guest’s translation tables
are directly used by the hardware IOMMU to translate
DMA addresses, eliminating any need to synchronize
and combine translation mappings.
The design uses a memory-resident region to store

the register state of the virtual IOMMU. The data at
a given offset within the region represents the value of
the register of the virtual IOMMU at that offset within
the hardware MMIO range. This page is mapped to
the guest in the G-stage mappings, therefore, the
guest’s IOMMU driver can directly access the page.
For example, the guest fills the GPA of the root of
its translation tables into this page when the driver
configures the root register. Figure 3 illustrates this
architecture.
When the hardware IOMMU is configured to per-

form nested translation for a given device, the device’s
translation tables store a pointer to the aforementioned
virtual IOMMU stage region along side the pointer to
the G-stage page tables. After obtaining the pointer
to the memory region when the hardware walks the
translation tables, it follows the translation tables con-
figured by the guest via the root pointer filled by the
guest, treating all the addresses as GPA and translat-
ing them via walking the G-stage page tables. In the
end, the GVA in the DMA address is translated to the

Tbl BasePtr

G-stage PT
Base Ptr

IOMMU HW

VM

GPA->HPA

Hardware-Assisted Virtual IOMMU

Host

Kernel

IO PT

GVA->GPA
Unmodifed IOMMU Driver

Virtual IOMMU State Region

Tbl BasePtr
Trans Context

QEMU

Virtual IOMMU Init

G-stageMapping

Figure 3: Hardware-Assisted Virtual IOMMU

HPA, and the transaction is forwarded to the fabric
for memory access.

Implementation

We have implemented our design in QEMU and Linux
KVM. We have also completed necessary modification
in the Linux kernel. The QEMU involves the emulation
logic for our IOMMU as well as necessary modification
on the VFIO related configurations when QEMU is
used by the KVM.We implemented our IOMMU driver
in the Linux kernel, and performed minor modification
on the VFIO kernel framework. The same driver works
for both the host and the guest.

Discussion

The design presented in this work is transparent to
software. The complex trapping and emulation is
eliminated. It allows transparent virtualization of the
IOMMU, simplifying porting and adoption efforts.

The memory region of virtual IOMMU state allows
support for large number of virtual machines, com-
pared to register-based approach. There is no need for
the host the switch register contents according to the
scheduling of the host.
Our design is not coupled with any specific bus

features such as the Address Translation Service of
PCIe, potentially allowing for wider range of adoption.

2 RISC-V Summit Europe, Barcelona, 5-9th June 2023


	Introduction
	The Design of Hardware-Assisted Virtual IOMMU
	Implementation
	Discussion

