Enabling Virtualization on RISC-V
Microcontrollers

Stefano Mercogliano, Daniele Ottaviano and Alessandro Cilardo

Department of Electrical Engineering and Information Technologies,
University of Naples Federico II
{stefano.mercogliano, daniele.ottaviano, acilardo}@unina.it

Abstract

This paper briefly provides the main motivations and goals to enable isolation and virtualization on MMU-
less devices, introducing a high-level description of an extension meant to support virtualization on RISC-V
microcontrollers through a set of new hardware mechanisms, concluding with an outline of our future directions.

Introduction and Context

Nowadays industrial-related research (e.g. Automo-
tive, Aerospace, Nuclear, Military) is going towards
the consolidation of multiple real-time applications
and OSes on single boards with the main goal of op-
timizing a set of parameters usually referred to as
SWaP-C (Size, Weight, Power, Cost). To this end,
embedded virtualization proved to be an effective so-
lution, usually achieved by means of ad-hoc tailored
hypervisors. Despite providing powerful virtualiza-
tion hardware support, application processors (e.g.
Arm Cortex-A family) imply non negligible downsides
with regard to real-time embedded virtualization. The
growing complexity of mechanisms in multicore appli-
cation processors, such as prefetching, branch predic-
tion, cache coherence as well as memory virtualization,
improves the average performance while decreasing
predictability and hardening the process of certifica-
tion. Partitioned hypervisors attempt to solve this
problem through static resource allocation, but they
eventually run into issues with inefficient resource us-
age and high power consumption. Microcontrollers are
way cheaper than application processors, and buying
more of them is the solution mostly adopted nowadays.
However, along with the growing demand for numerous
integrated functionalities, virtualization would lead to
advantages in scalability, ease for software integration,
porting and updating along with benefits in terms of
reliability and availability.

Microcontroller virtualization is a relatively new
concept, yet not unexplored. Pinto et al. [1] used
TrustZone-M to enable virtualization on Cortex-M,
providing a two guests model. In [2], the authors de-
scribe uTango, a secure OS relying on TrustZone-M to
isolate trusted applications and OSes in the non secure
world. In general, TrustZone-M can be used to support
a secure world hypervisor and a set of isolated guests
in the non secure world, keeping guest states into the
secure memory. RISC-V architecture lacks a compara-

RISC-V Summit Europe, Barcelona, 5th-9th June 2023

ble stable mechanism, therefore many proposals have
been discussed in the community to isolate M mode
code [3]. The Trusted Context Extension (TCx) and
especially the Trusted Ezecution State (TESx) have
been designed to mimic and improve TrustZone-M on
RISC-V microcontrollers. Differently, Machine Mode
Split Extension (MMSx) proposes to split the Ma-
chine mode in two, similarly to H-extension, to host a
separate secure monitor. In the recent Armv8-R speci-
fication, Arm was the first to introduce a virtualization
hardware support for microcontrollers. The key idea is
to add the EL2 for the hypervisor to run and support
a second level MPU directly handled by the host to
isolate guests. Supporting virtualization on RISC-V
microcontrollers with a TrustZone like approach would
dictate a set of limitations in terms of performance,
predictability, scalability and reliability, mostly due to
the dual world model and the focus on security rather
than reliability. Therefore, we propose a hardware
support with a focus on explicit virtualization rather
than an adapted TrustZone-like model.

Virtualization Support Design

Hardware virtualization support has been designed
according to the requirements of Fquivalence, Con-
trol and Performance described by Popek & Goldberg.
However, microcontroller workloads usually demand
predictability as well; improving performance mostly
consists of new hardware structures shared among
guests, causing extra and nondeterministic latency
and harnessing predictability (e.g. caches, predictors).
In the literature, real-time virtualization has been
successfully demonstrated mainly using partitioning-
based approaches (e.g. Jailhouse, Bao). Based on
this idea, we follow the principle that adding new
shared resources improves performance and does not
reduce predictability only if such resources can be per-
fectly, but not necessarily equally, partitioned among
all guests owning that resource. For this to happen,



the host machine must provide a significantly higher
number of resources compared to the guest machines.

Similarly to H-extension and MMSx, we split M
mode in a Root Machine (RM) mode and an Emulated
Machine (EM) mode. This implies the duplication of
M-CSRs. However, differently from H-extension, the
RM mode shall not support type-2 hypervisors nor
handle page tables. RM-mode can access guest CSRs
and handle a set of new RM-CSRs (e.g. guest and
interrupt handling). EM mode must see EM-CSRs like
native M-CSRs in order to let guests run unmodified.
A consequence of M mode virtualization, compared to
S mode virtualization, is the increase of guest context.
Therefore, along with the need of avoiding nondeter-
minism, we must support a set of mechanisms based on
the partitioning principle outlined above to minimize
context size and switch overhead.

We assume a number of guests per core less than
or equal to 8, so that the partitioning principle can
be reasonably applied and its related mechanisms pro-
grammed by means of RM-CSRs. General Purpose
(GP) registers can be totally banked for each guest with
a very small N (e.g. N = 2). In case of E-extension
enabled guests the hypervisor might partition a single
GP regfile in two parts (i.e. GP coloring). However,
because the GP regfile accounts for a significant per-
centage in terms of both area and power consumption
in microcontrollers, we inherit the idea of TESx and
TrustZone-M to provide partial banking (i.e. stack
pointer, thread pointer, global pointer). Similarly to
Armv8-R, guests isolation can be achieved by adopt-
ing a second level of protection. The PMP can be
transparently programmed and handled by guests (e.g.
to isolate tasks), while the extra protection layer is in
charge of preventing a guest to tamper with another
guest. Such a choice implies that the PMP is accessed
by each guest context. In order to alleviate such a
burden, the hypervisor can program a PMP coloring
mechanism so that each running guest only sees a
fraction of the pyhsical PMP. This idea is a specific
instance of a CSRs partitioning mechanism introduced
in [4], although implementation details are still to be
defined. Omne key observation is that despite being
effective in improving context switch cost, coloring
techniques are not always applicable, since they rely
on specific configuration constraints. Therefore, we
are considering the introduction of new instructions
to quickly context switch depending on the enabled
performance features (e.g. colored resources, TCMs).
Moreover, in order to properly delegate interrupts to
guest, the RM mode must hold a RM-CSR for the cur-
rent running guest ID, which must be propagated on
the fabric as well in order to be shared with peripherals
and interrupt controllers (i.e. CLIC, PLIC).

One major problem underlying unmodified execu-

tion is that binaries are written to run on a specific
platform physical memory layout. Because no virtual
memory is supported, it is necessary to relocate guest
addresses to host addresses in a unique and transparent
way. Such a mechanism does not require intermediate
physical pages to be swapped or revoked, as it would
result in unpredictable memory accesses, but would
still require some intelligence, yet simple and minimal.
In [5] Pan et al., describe a technique to generalize
MPUs in a guarded-radix-tree-based structure, provid-
ing an optimized MPU configuration at linking time;
although loosely coupled with the memory relocation
problem, it inspired our design of a Phyisical Mem-
ory Relocation(PMR) unit to support a lightweight
memory relocation mechanism to provide transparent
unmodified execution.

Conclusions and Future Works

This document briefly describes the underlying mo-
tivations towards embedded virtualization and the
limitations for modern RISC-V based microcontrollers.
We also provide a high-level description of our ongo-
ing project; we are now working on the mechanism
of memory relocation and context switch instructions,
while timer and peripheral handling still remains an
open problem. In the short run we expect to provide
a functional proof-of-concept and some experimental
results targeting the cores from the PULP family, in
both single- and multi-core configurations, adopting
a simulated approach using Verilator and FPGA syn-
thesis. For the future, we are motivated in refining
the architecture and building an open software en-
vironment, including a hypervisor, capable of fully
exploiting the proposed extension.

References

[1] Sanndro Pinto et al. “Virtualization on TrustZone-
enabled microcontrollers? Voila!” In: 2019 IEEE Real-Time
and Embedded Technology and Applications Symposium
(RTAS). IEEE. 2019, pp. 293-304.

[2] Daniel Oliveira, Tiago Gomes, and Sandro Pinto. “uTango:
an open-source TEE for IoT devices”. In: IEEE Access 10
(2022), pp. 23913-23930.

[3] Stefano Mercogliano. RISC-V Machine Mode isola-
tion Proposals Owverview. URL: https : / / docs .
google . com / presentation / d / laMv4zJ6qudteE _
11Gs0Xr59pgpe04erT2JBRF4R1TGM/edit#slide=1id.p.

[4] Alessandro Cilardo and Stefano Mercogliano. “Flexible priv-
ilege management for microcontroller-class RISC-V cores”.
In: Microelectronics Reliability 137 (2022), p. 114771.

[5] Runyu Pan et al. “Predictable virtualization on memory
protection unit-based microcontrollers”. In: 2018 IEEE
Real-Time and Embedded Technology and Applications
Symposium (RTAS). IEEE. 2018, pp. 62-74.

RISC-V Summit Europe, Barcelona, 5th-9th June 2023


https://docs.google.com/presentation/d/1aMv4zJ6qu4teE_1lGs0Xr59pgpe04erT2JBRF4R1TGM/edit#slide=id.p
https://docs.google.com/presentation/d/1aMv4zJ6qu4teE_1lGs0Xr59pgpe04erT2JBRF4R1TGM/edit#slide=id.p
https://docs.google.com/presentation/d/1aMv4zJ6qu4teE_1lGs0Xr59pgpe04erT2JBRF4R1TGM/edit#slide=id.p

	Introduction and Context
	Virtualization Support Design
	Conclusions and Future Works

