
Detecting and Patching Transient Execution Side
Channels in an Out-of-Order RISC-V Core

Tobias Jauch1 ∗, Alex Wezel1, Mohammad Rahmani Fadiheh1, Dominik Stoffel1, Wolfgang Kunz1

1Rheinland-Pfälzische Technische Universität Kaiserslautern-Landau

Abstract

Transient Execution Side Channels in modern hardware systems are particularly hard to detect and even harder to mitigate
efficiently. Our case study on the open-source out-of-order processor SonicBOOM highlights some of the difficulties and
pitfalls involved. We detected that a vulnerability to Meltdown has been re-introduced to the design by minor hardware
updates and that closing this gap can easily leave certain channels open or even introduce new ones, e.g., channels that are
based on speculative interference. Furthermore, we show how these channels can securely be mitigated with the help of a
formal verification tool.

Introduction
Transient Execution Side Channel (TES) attacks, such
as Spectre [1] and Meltdown [2], exploit side effects of
instructions that are executed transiently, i.e., they are
are executed speculatively and later discarded due to mis-
speculation or an earlier exception. This phenomenon is
only visible at the cycle-accurate microarchitectural level,
which exacerbates the challenge of detecting it in a hardware
design.
In this work, we present our experiences with detecting

and fixing Meltdown- and Spectre-type vulnerabilities in a
complex out-of-order core. With our case study on the open-
source BOOM design [3] we demonstrate the challenges
of patching hardware against TES attacks. All of the vul-
nerabilities reported in this work are originally found using
the formal security verification technique UPEC [4], high-
lighting the importance of formal verification for ensuring
security.

Case Study on BOOM
Meltdown-Type Vulnerabilities
While the developers presented BOOMv2 as being secure
against Meltdown, our formal analysis showed that seem-
ingly innocuous design updates applied to the load-store unit
(LSU) of BOOMv3 (SonicBOOM) have made the design
vulnerable to Meltdown. The updated design conforms to
the ISA specification and misaligned loads and page faults
do raise exceptions as intended. However, these exceptions
are only sent to the core itself (signal (1) in Fig. 1) and are
handled when the corresponding load instruction arrives
at the head of the reorder buffer. In the meantime, the
corresponding read request may be sent to the data cache,
thereby opening a timing side channel. This is due to
a minor design update in SonicBOOM that removed the
exception flag from the load queue and does not consider it
when sending new read requests.

After this discovery, we informed the development team,
who confirmed the gap. Fig. 1 shows the implemented
patch that re-introduces the exception flag to the load queue

∗Corresponding author: jauch@eit.uni-kl.de

LSU DCache

S0 stage

S1 stage

S2 stage MEM

v. addr.

CORE

p. addr.

exception
data resp.

TLB

1

2

3

Figure 1: Load-Store Unit in BOOM and implemented Meltdown
mitigations

and uses this flag to stop faulty loads from being sent to
data cache in order to mitigate the vulnerability (signal (2)
in Fig. 1). A designer might assume the vulnerability to
be fixed now and no additional analysis were necessary.
However, further formal analysis with UPEC showed that
the design is still vulnerable to Meltdown-type attacks, due
to the specific implementation of the LSU in SonicBOOM.
The first design patch ensures that the load instructions

from the load queue with asserted exception flag can no
longer reach the data cache. However, in SonicBOOM, in
case the translation lookaside buffer (TLB) and data cache
are available, the LSU prioritizes newly dispatched loads
over the loads inside the load queue and directly sends them
to the TLB. If address translation is successful, the newly
dispatched (and now translated) load operation is sent to
both the load queue and the data cache simultaneously.
The first patch only blocks faulty loads in the load queue
from being sent to the data cache. However, this does
not cover the above scenario for newly dispatched loads.
Implementing the same check for faulty loads that can reach
the data cache directly from TLB closes this gap. This patch
successfully secured SonicBOOM against Meltdown-type
vulnerabilities, as verified by UPEC in our case study.

Spectre-Type Vulnerabilities

We also conducted a formal security analysis on Sonic-
BOOM for speculative execution of privileged-mode soft-
ware (e.g., kernel software executed in supervisor mode).
Speculative execution in privileged mode allows an attacker
to trick the core into speculatively accessing secret data

RISC-V Summit Europe, Barcelona, 5-9th June 2023 1

mailto:jauch@eit.uni-kl.de


FP. CONV.

BRANCH

LOAD

STORE

ROB head
...

...

...

...

uncommittable
due to misprediction secret dependent xcpt.

store gets
priority in LSU 
based on xcpt.

1

23

stores in LSU can
delay floating

point operations

ROB

will turn out to be
mispredicted

Figure 2: Speculative Interference Vulnerability in FPIU

within a privileged victim process, which is the basis for
Spectre-type attacks.
Beside classic Spectre attacks, we also discovered a

new variant exploiting vulnerabilities similar to speculative
interference [5] and Spectre-STC [4]. Speculative interfer-
ence attacks use transient, secret-dependent operations to
influence the timing of older operations that will definitely
commit.

Formal security analysis in SonicBOOM by UPEC found
an execution trace in which a speculative secret-dependent
load can delay a non-transient floating point operation at
the head of the ROB. This was made possible by a design
flaw in one of BOOM’s functional units. The floating point
to integer unit (FPIU) is responsible for both floating point
to integer conversion instructions and floating point store
instructions. In this unit, the ready bit of the interface is
set only if both of these tasks can be performed, i.e., if the
FPIU is not already busy with another operation and the
LSU is ready to receive store operations. UPEC showed
an interesting Spectre variant exploiting this seemingly
innocent design flaw.
Let us assume a speculative attack scenario as depicted

in Fig. 2. Within a (mis-)speculated sequence there is
a secret-dependent load (i.e., a load instruction that uses
speculatively accessed secret as its address operand) from
the load queue and a newly dispatched store that both need
to access the TLB. The load instruction has the higher
priority. However, if the accessed address is misaligned (1),
the load is aborted and the store is prioritized (2). Since
the target address of the load is a function of the secret, the
priority of the store also depends on the secret. The store is
now able to block and delay a non-transient floating point
to integer conversion because the FPIU does not accept
requests until the store queue in the LSU becomes available
again (3).
This example shows how small design decisions in dif-

ferent modules can lead to potential covert channels that
are almost impossible to detect without formal methods.
We decided to tackle this vulnerability with a dedicated
fix in the FPIU, so that conversions now can be executed
independently of floating point stores.

New Side Channels in the Patched Design
Although the FPIU vulnerability was caused by an imple-
mentation detail inside the FPIU, the patched SonicBOOM
design suffers from a more global speculative interference
problem inside the load and store queue of the LSU. UPEC

counterexamples showed that preventing faulty loads from
being sent to the data cache interface (S0 stage in Fig. 1)
and choosing a different operation to be processed creates
a secret-dependent timing behavior in the system. Specu-
lative secret-dependent loads can influence the timing of
non-transient operations by creating contention over dif-
ferent resources in the memory subsystem. We solve this
problem by shifting the intervention of our Meltdown miti-
gation mechanism by one cycle. Instead of being prevented
from reaching the data cache, faulty memory requests are
now killed by signal (3) in Fig. 1 before propagating to the
last stage inside the data cache. With this mechanism, given
that the cache interface is fully pipelined, faulty loads do
not affect the scheduling of memory requests to the data
cache. A faulty load occupies the data cache port for one
clock cycle, but in the following cycle the port is available
again regardless of whether or not the load was aborted in
the S1 stage. Meltdown attacks are still prevented since
faulty loads can never access the data array inside the data
cache (S2 stage).

Conclusion
The findings of this case study clearly show the challenges
of implementing mitigations to transient execution attacks
in modern out-of-order cores. When it comes to complex
designs, there is a high chance of missing leakage paths
or even introducing new ones. Being aware of and giving
consideration to all possible consequences is a very de-
manding task for designers. At this point, the capabilities of
formal tools like UPEC can provide a significant advantage
over standard design flows and testing, as they provide the
opportunity to iteratively patch and verify the design. This
way, vulnerabilities cannot only be discovered but it is also
ensured that implemented mitigations do not lead to new
weaknesses.

References
[1] Paul Kocher, Jann Horn, Anders Fogh, Daniel Genkin, Daniel Gruss,

Werner Haas,MikeHamburg,Moritz Lipp, StefanMangard, Thomas
Prescher, et al. “Spectre Attacks: Exploiting Speculative Execution”.
In: 2019 IEEE Symposium on Security and Privacy (SP). IEEE,
2019.

[2] Moritz Lipp, Michael Schwarz, Daniel Gruss, Thomas Prescher,
Werner Haas, Anders Fogh, Jann Horn, Stefan Mangard, Paul
Kocher, Daniel Genkin, et al. “Meltdown: Reading Kernel Memory
from User Space”. In: 27th USENIX Security Symposium (USENIX
Security 18) (2018), pp. 973–990.

[3] Jerry Zhao, Ben Korpan, Abraham Gonzalez, and Krste Asanovic.
“SonicBOOM: The 3rdGeneration BerkeleyOut-of-OrderMachine”.
In: Fourth Workshop on Computer Architecture Research with RISC-
V (2020).

[4] Mohammad Rahmani Fadiheh, Alex Wezel, Johannes Müller, Jörg
Bormann, Sayak Ray, Jason M. Fung, Subhasish Mitra, Dominik
Stoffel, and Wolfgang Kunz. “An Exhaustive Approach to Detecting
Transient Execution Side Channels in RTL Designs of Processors”.
In: IEEE Transactions on Computers 72.1 (2023), pp. 222–235.

[5] Mohammad Behnia, Prateek Sahu, Riccardo Paccagnella, Jiyong Yu,
Zirui Neil Zhao, Xiang Zou, Thomas Unterluggauer, Josep Torrellas,
Carlos Rozas, Adam Morrison, et al. “Speculative Interference
Attacks: Breaking Invisible Speculation Schemes”. In: Proceedings
of the 26th ACM International Conference on Architectural Support
for Programming Languages and Operating Systems. ASPLOS ’21.
2021, pp. 1046–1060.

2 RISC-V Summit Europe, Barcelona, 5-9th June 2023


	Introduction
	Case Study on BOOM
	Meltdown-Type Vulnerabilities
	Spectre-Type Vulnerabilities
	New Side Channels in the Patched Design

	Conclusion

