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UPEC: Formal RTL Security Verification
▪ Exhaustively detect Transient Execution Side Channels in RTL 

implementations 

▪ No need for a-priori knowledge on attacks

▪ Proof method scales to out-of-order processors 

▪ UPEC has also been extended to other security targets, such as 

integrity, data-oblivious execution or confidentiality in SoCs

Unique Program Execution Checking

▪ Miter model: Two instances of the design under verification

▪ Initial state (memory, pipeline buffers, etc.) is constrained to 

be arbitrary but identical → CPU may execute any program

▪ Only difference: secret data in memory

▪ If both instances produce the same execution trace (clock-

cycle accuracy), execution is independent of secret data and 

no transient execution side channel exists in the design 
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Spectre-Type Vulnerabilities in BOOMv3

▪ Besides classic Spectre attacks, UPEC analysis discovered a 

previously unknown contention-based Spectre variant

▪ Speculative secret-dependent loads can delay non-transient 

floating-point operations at ROB head

▪ The vulnerability was introduced by a design bug in BOOM’s 

floating-point to integer unit (FPIU) that is responsible for 

conversions and floating-point store instructions.

▪ The unit can only process new requests if both operations 

could be performed, i.e., the FPIU is not busy, and LSU is ready 

to process a store operation

▪ Secret-dependent execution of a store instruction in LSU can 

therefore block an older, non-transient float. conversion

Meltdown Attack on BOOMv3

▪ Formal UPEC analysis discovered Meltdown vulnerability in 

BOOMv3 that had been introduced by minor design updates

▪ Misaligned loads and page faults raise exceptions as intended, 

but only send them to the core (     ) while the faulting load 

itself can still propagate to the data cache

▪ The time between address translation and handling of the 

exception at ROB head can be used to read confidential data 

and create footprints in the microarchitecture

▪ Our implemented patch introduces an exception flag to the 

load queue and uses this flag to prevent faulting loads from 

being sent to the data cache (     )

▪ Further UPEC analysis showed that this fix introduced a new 

possibility for a Spectre attack. Sending a different instruction 

to the data cache in case a faulting load was blocked created 

secret-dependent timing. Killing faulty loads in the S1 stage 

makes the scheduling independent from transient data (     )
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Transient Execution Attacks
▪ Transient Execution Side Channel (TES) attacks exploit 

speculative and out-of-order execution in modern CPUs

▪ An attacker can trick the CPU into transiently accessing 

confidential data that leave a footprint in microarchitectural 

buffers although the architectural state is reverted

▪ Examples are Spectre, Meltdown or MDS attacks

Conclusion

▪ Implementing secure mitigations to transient execution attacks 

in modern out-of-order processors is still a challenge

▪ Leakage paths can easily be missed in complex designs, and it 

is possible to even introduce new vulnerabilities when fixing 

the detected ones

▪ Being aware of all possible consequences of a design decision 

is a very demanding task for designer

▪ Formal tools like UPEC provide a significant advantage over 

standard design flows and testing, as they provide the 

possibility to iteratively verify and patch the design to ensure 

that vulnerabilities are removed, and no additional weaknesses 

are introduced
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