
Detecting and Patching Transient Execution Side

Channels in an Out-of-Order RISC-V Core
Tobias Jauch1, Alex Wezel1, Mohammad Rahmani Fadiheh1, Dominik Stoffel1 and Wolfgang Kunz1

1Rheinland-Pfälzische Technische Universität Kaiserslautern-Landau

UPEC: Formal RTL Security Verification
▪ Exhaustively detect Transient Execution Side Channels in RTL

implementations

▪ No need for a-priori knowledge on attacks

▪ Proof method scales to out-of-order processors

▪ UPEC has also been extended to other security targets, such as

integrity, data-oblivious execution or confidentiality in SoCs

Unique Program Execution Checking

▪ Miter model: Two instances of the design under verification

▪ Initial state (memory, pipeline buffers, etc.) is constrained to

be arbitrary but identical → CPU may execute any program

▪ Only difference: secret data in memory

▪ If both instances produce the same execution trace (clock-

cycle accuracy), execution is independent of secret data and

no transient execution side channel exists in the design

RISC-V Summit Europe, Barcelona, 5-9th June 2023

Spectre-Type Vulnerabilities in BOOMv3

▪ Besides classic Spectre attacks, UPEC analysis discovered a

previously unknown contention-based Spectre variant

▪ Speculative secret-dependent loads can delay non-transient

floating-point operations at ROB head

▪ The vulnerability was introduced by a design bug in BOOM’s

floating-point to integer unit (FPIU) that is responsible for

conversions and floating-point store instructions.

▪ The unit can only process new requests if both operations

could be performed, i.e., the FPIU is not busy, and LSU is ready

to process a store operation

▪ Secret-dependent execution of a store instruction in LSU can

therefore block an older, non-transient float. conversion

Meltdown Attack on BOOMv3

▪ Formal UPEC analysis discovered Meltdown vulnerability in

BOOMv3 that had been introduced by minor design updates

▪ Misaligned loads and page faults raise exceptions as intended,

but only send them to the core () while the faulting load

itself can still propagate to the data cache

▪ The time between address translation and handling of the

exception at ROB head can be used to read confidential data

and create footprints in the microarchitecture

▪ Our implemented patch introduces an exception flag to the

load queue and uses this flag to prevent faulting loads from

being sent to the data cache ()

▪ Further UPEC analysis showed that this fix introduced a new

possibility for a Spectre attack. Sending a different instruction

to the data cache in case a faulting load was blocked created

secret-dependent timing. Killing faulty loads in the S1 stage

makes the scheduling independent from transient data ()

LSU DCache

S0 stage

S1 stage

S2 stage MEM

v. addr.

CORE

p. addr.

exception
data resp.

1

2

3

TLB

FP. CONV.

BRANCH

LOAD

STORE

ROB head
...

...

...

...

uncommittable
due to misprediction secret dependent xcpt.

store gets
priority in LSU
based on xcpt.

1

23

stores in LSU can
delay floating

point operations

Re-Order Buffer (ROB)

will turn out to be
mispredicted

Transient Execution Attacks
▪ Transient Execution Side Channel (TES) attacks exploit

speculative and out-of-order execution in modern CPUs

▪ An attacker can trick the CPU into transiently accessing

confidential data that leave a footprint in microarchitectural

buffers although the architectural state is reverted

▪ Examples are Spectre, Meltdown or MDS attacks

Conclusion

▪ Implementing secure mitigations to transient execution attacks

in modern out-of-order processors is still a challenge

▪ Leakage paths can easily be missed in complex designs, and it

is possible to even introduce new vulnerabilities when fixing

the detected ones

▪ Being aware of all possible consequences of a design decision

is a very demanding task for designer

▪ Formal tools like UPEC provide a significant advantage over

standard design flows and testing, as they provide the

possibility to iteratively verify and patch the design to ensure

that vulnerabilities are removed, and no additional weaknesses

are introduced

Related Publications
M. R. Fadiheh, D. Stoffel, C. Barrett, S. Mitra, W. Kunz: “Processor Hardware Security Vulnerabilities

and their Detection by Unique Program Execution Checking”,

Design Automation and Test in Europe (DATE), 2019

M. R. Fadiheh, J. Müller, R. Brinkmann, S. Mitra, D. Stoffel, W. Kunz: “A formal approach for detecting

vulnerabilities to transient execution attacks in out-of-order processors”,

57th IEEE/ACM Design Automation Conference (DAC’20), 2020

J. Müller, M. R. Fadiheh, A. Duque Anton, T. Eisenbarth, D. Stoffel, W. Kunz: „A Formal Approach

to Confidentiality Verification in SoCs at the Register Transfer Level“,

58th IEEE/ACM Design Automation Conference (DAC’21), 2021

L. Deutschmann, J. Müller; M. R. Fadiheh; D. Stoffel and W. Kunz: „Towards a Formally Verified

Hardware Root-of-Trust for Data-Oblivious Computing “,

59th IEEE/ACM Design Automation Conference (DAC’22), 2022.

M. R. Fadiheh, A. Wezel, J. Müller, J. Bormann, S. Ray, J. M. Fung, S. Mitra, D. Stoffel, W. Kunz: „An

Exhaustive Approach to Detecting Transient Execution Side Channels in RTL Designs of Processors,

IEEE Transactions on Computers, January 2023

D. Mehmedagic, M. R. Fadiheh, J. Müller, A. L. Duque Anton, D. Stoffel and W. Kunz, “Design of

Access Control Mechanisms in Systems-on-Chip with Formal Integrity Guarantees,”

32nd USENIX Security Symposium, 2023 (To Appear).

1

2

3

	Folie 1

