RISC-V Core FPGA

tracing for verification

Alberto Moreno!, Jordi Cortina', Alex Torregrosa! and Roger Espasal

1Semidynamics

Abstract

This paper introduces an FPGA verification, debug and performance platform for RISC-V cores. The system
utilizes the open source RISC-V simulator Spike as a golden model that can be co-emulated with the core in real
time. In our experience, this enables verification at up to 50 MHz. This allows for rapid iteration of new features
by testing them in a realistic environment without a previous need for unit-level verification. The platform may
also be configured to act unobtrusively in order to generate real time accurate performance metrics.

Introduction

One of the most challenging aspects when designing a
RISC-V core is guaranteeing its functional correctness.
The industry has long settled into using unit-level
verification of all the components present in the core,
combined with the use of an FPGA-based emulation
platform such as Veloce|[1]| or Zebu[2].

Unit-level verification using simulation tools ensures
high visibility into the DUT, as well as allowing fine-
grain control of its randomization. Typically, several
unit-level testbenches are combined into “sections” of
the core, which are exercised intensively with random
testing, sometimes called super-unit level testing.

Unit and Super-unit level testing have one major
drawback: slow speed. Since they are based on sim-
ulation tools, the verification team is limited by a
combination of the number of CPUs available to the
verification team, the number of simulation licenses
available, and the speed of the CPUs. Hence, for high
volume verification, most teams turn to the use of
FPGA-based emulation systems.

When using FPGA emulation, one needs to ensure
that the RTL running on the FPGA performs correctly.
In commercial emulation systems, the UVM testbench
can be run in parallel with the RTL, checking cor-
rectness as if one was using simulation. The major
downside of this approach is that, despite using an
FPGA, speed may become limited by the testbench.

In this paper, we introduce an alternative method
for verification using FPGAs that allows high speed
(up to 50Mhz in our experience) while still checking
the correctness of the RTL by executing in parallel, or
co-emulating, a Simulator along the RTL.

FPGA co-emulation overview

The co-emulation platform is composed of an FPGA,
a RISC-V simulator and the tracing platform.

RISC-V Summit Europe, Barcelona, 5-9th June 2023

FPGA Host
Core T —
DRAM D Spike
TE

Figure 1: Co-emualtion platform overview

The FPGA is the physical platform in which the
RISC-V core will be synthesized. It must be large
enough to fit the core, but in recent years, FPGAs
with capacity to emulate large amounts of cells have
been developed and released by the two major vendors
Xilinx and Altera. This significantly raises the bar
for which cores can be tackled by this approach. It is
important that the selected FPGA has access to a large
block of DRAM in order to store the debug information
that will be generated by the tracing platform.

The simulator is the tool that does the heavy lifting
for the verification effort, acting as a golden model
for the RISC-V spec. In our implementation we use a
lightly modified version of the open source Simulator
Spike[3]. These modifications are performed in order
to accommodate the particularities of the design core,
but the simulator remains otherwise unchanged.

The tracing system is endeavored in capturing in-
formation from the core within the FPGA, pacing
the simulation and verifying that core and simulator
match. It is composed of three subsystems: the Trace
Encoder (TE), the Trace Transmitter (TT) and the
Trace Decoder (TD). Figure 1 shows an overview of
the platform, with all its different parts.

Trace Encoder: The Trace Encoder is a piece of
RTL that is synthesised within the core itself. It is
connected to the relevant signals for the core, which
are encoded into packages and sent to the TT. The
interface between the TE and the TT must be wide
enough to accommodate for the signals being traced.

Trace Transmitter: The Trace Transmitter is a
module that is synthesized outside of the core, but still

in the same FPGA. It is connected to the TE within
the core and to the TD in the host machine. The TT
has access to a dedicated address space in a DRAM
in order to store and transmit traces towards the
TD. Another important role of the TT is flow control:
there must be a mechanism to stall the core whenever
the allocated DRAM runs out of space to store traces.
Because of this, the relationship between the size of the
traces and the bandwidth of the connection between
FPGA and host will impose an upper limit on the
performance of the co-emulation.

Trace Decoder: The Trace Decoder is a piece
of software that runs in the host machine. It must
have outside access to the DRAM address space where
the TT stores traces, which the TD then fetches and
interprets. It must then interface with the Simulator
to execute the same instructions and verify the results.

As an example, the TE may connect to the re-
tirement signal for the core, indicating the Program
Counter (PC) of every instruction that is being retired.
It may also include the result of executed instructions,
such as an addition or a load. This information is sent
to the TT, which will store it in its dedicated address
space. The TD will then fetch this information and use
it to infer that an instruction has been retired in the
core. This is used to indicate the simulator that a new
instruction must be executed. The PC and the result
of this instruction can then be compared against the
one reported by the core. If a mismatch is detected,
the TD can inform of the PC and the differences in
the result.

Even if the information transmitted contains only
the PC and the result, the simulator can extrapolate
much more information. In the previous example,
it is possible to infer the data contained in all the
integer registers in the core by just looking at the data
contained in the simulator’s registers. It’s also possible
to generate a trace of all the executed instructions and
make deductions about the internal state of the core.

Advantages and challenges

We successfully tested this strategy in the design of a
commercial core. The design can be quickly tested in
a real environment, running binaries in a modern OS
while still obtaining feedback about the correctness
of the execution. This enables a rapid iteration cycle
in which new features can be tested in a system-wide
platform at up to 50 MHz. Errors are observed much
faster, without the need for producing extra verifica-
tion IP tailored to every new module. Furthermore,
this platform may be included into a Continuous Inte-
gration strategy where every significant code update
can be automatically verified in an FPGA.

An additional advantage of our method is that it

Figure 2: Performance trace

allows cycle-accurate performance analysis. If the
information transmitted is kept below the connection
bandwidth between core and host machine, this tracing
system can run without any stalls. This enables real-
time monitoring of a large number of performance
metrics as well as off-line execution traces. It can
show, for example, number of misses and hits for a
given executed function. Figure 2 depicts an example
of one such trace, showing how different metrics evolve
in time, including the call stack and the name of the
different functions being executed.

But this approach does not come without challenges.
The bandwidth between the FPGA and the host ma-
chine is often a bottleneck, particularly when too much
information is being tracked. This forces a trade off
between the amount of information that can be verified
and the speed at which tests can be run.

Ultimately, the major challenge for this approach
is reproducibility. Using an FPGA with real DRAM
enables testing in an environment that is very similar
to post-silicon. This may include large variability
in between runs. When an issue is detected in co-
emulation, it is sometimes complex to reproduce the
conditions that caused it. Thus, several re-runs of the
same tests are often required in order to reproduce it.

Conclusions

In this paper we propose a verification strategy for
the design of RISC-V cores that has been tested in
a commercial design. This strategy includes the use
of FPGAs to co-emulate cores with an open source
RISC-V simulator. The platform implemented for this
use has been successful at accelerating the iteration
speed between implementation and testing of features
in a realistic environment. The main challenge for
this approach lays in reproducing issues found while
in co-emulation. But this is attenuated by the speed
at which tests can be re-executed.

References

[1] Siemens. Veloce Prototyping - FPGA. URL: eda . sw .
siemens.com/en-US/ic/veloce/fpga-prototyping.
[2] Synopsys. Zebu Server Emulation System. URL: www .

synopsys . com/verification/emulation/zebu- server.
html.

[3] Riscv-Software-Src. RISCV-software-src/RISCV-isa-SIM:
Spike, a RISC-v isa simulator. URL: github.com/riscv-
software-src/riscv-isa-sim.

RISC-V Summit Europe, Barcelona, 5-9th June 2023

eda.sw.siemens.com/en-US/ic/veloce/fpga-prototyping
eda.sw.siemens.com/en-US/ic/veloce/fpga-prototyping
www.synopsys.com/verification/emulation/zebu-server.html
www.synopsys.com/verification/emulation/zebu-server.html
www.synopsys.com/verification/emulation/zebu-server.html
github.com/riscv-software-src/riscv-isa-sim
github.com/riscv-software-src/riscv-isa-sim

	Introduction
	FPGA co-emulation overview
	Advantages and challenges
	Conclusions

