
VOSySzator: A flexible embedded RISC-V system
virtualizer targeting the cloud

Alvise Rigo1∗, Daniel Raho1, Samuele Paone1 and Timos Ampelikiotis1

1Virtual Open Systems, France

Abstract

VOSySzator [1] is a flexible embedded system virtualizer based on rust-vmm building blocks which was originally
conceived by Virtual Open Systems to target embbedded virtualization use cases. It was specifically designed
to overcome challenges that embedded system integrators are asked to address when implementing fast and
low-overhead virtualization solution. However, as part of the Vitamin-V 2023-2025 Horizon Europe project’s
action, it will be extended to support cloud use cases as well, specifically for the RISC-V architecture. The features
set of VOSySzator as virtualization solution for embedded systems is of interest for the RISC-V architecture
which has many similarities to existing embedded architectures like ARMv8.

Introduction

System virtualization in embedded systems is a prac-
tice that is commonly used in niche use cases and
market segments or in very large markets as the auto-
motive one. In essence, these virtualization solutions
tend to be very specific, tailored to a limited set of
hardware. But most of all, these solutions result to
be expensive, given the high development costs of cer-
tified software. There are, however, some products
belonging to other market segments that could also
benefit from system virtualization like, for instance,
network equipment, set-top boxes and kiosks. In such
cases, due to the lack of flexible solutions that can be
easily tailored to specific use cases, OEMs renounce to
the extra benefits of virtualization (like snapshotting,
isolation from the host kernel, file system overlays,
etc.) in favor of more conventional system designs,
believed to be cheaper and easier to maintain.

VOSySzator is meant to democratize virtualization
in all markets, by proposing an accessible solution for
system designers and integrators to introduce virtu-
alization to all those scenarios that for the aforemen-
tioned reasons are keeping a more traditional design.
By definition, an embedded system is typically a small
device designed to draw as few watts as possible, al-
though yielding performance adequate to the type of
task the system is supposed to address. This intro-
duces one of the key challenges that VOSySzator is
designed to address, which is efficient and fast device
virtualization. As an answer to this, VOSySzator will
make heavy use of device-passthrough, a virtualization
technique that allows to expose (the verbs pass-through
∗Corresponding author: a.rigo@virtualopensystems.com
Funded by the European Union. Views and opinions expressed
are, however, those of the authors only and do not necessarily
reflect those of the European Union or the HaDEA. Neither
the European Union nor the granting authority can be held
responsible for them. Project number: 101093062

or attach are also widely used) a device to the guest
Operating Systems, allowing it to have full control of
the device, with almost native performance [2].

VOSySzator supporting RISC-V

In the context of Vitamin-V, VOSySzator will inherit
support for the RISC-V architecture. Vitamin-V is
an Horizon Europe project that aims to develop a
complete RISC-V open-source software stack for cloud
services as well as an advanced virtual execution envi-
ronment. In the action of this project, rust-vmm will
be ported to the RISC-V architecture and VOSySza-
tor, which is based upon it, will support a new range
of use cases and opportunities connected to the newly
supported architecture as well as to the cloud domain.

Virtual Open Systems considers the fundamental
features of VOSySzator as a good match for the cloud,
especially for serverless computing where the cloud
infrastructure must be able to provide fast and efficient
virtual machines with minimal footprint.

Core Features

Device pass-through is the virtualization technique
that guarantees the highest performance when it comes
to device virtualization. As a matter of fact, the inter-
action between the guest CPU and the device happens
directly, with no interference of the host kernel or
the hypervisor. The main price to be paid as far
as performance is concerned regards the delivery of
the device IRQs into the guest, which is mediated by
software (KVM) or hardware mechanisms and thus
might induce a small overhead. VFIO [3] is the ker-
nel architecture-independent driver which in Linux
takes care of setting up all the necessary bits (mainly
page tables and IRQ routing) to configure the de-
vice pass-through; it comes in two different variants,

RISC-V Summit Europe, Barcelona, 5-9th June 2023 1

mailto:a.rigo@virtualopensystems.com


PCI and Platform, respectively for PCI and platform
(i.e., memory-mapped [MMIO]) devices. At the time
of writing, rust-vmm provides already the necessary
binding to the corresponding IOCTLs, but this is not
enough for a system emulator.

The nature of an embedded system where MMIO
devices are used poses a considerable challenge when
it comes to device pass-through as each device might
depend on one or more devices. To have a glimpse
of this, it suffices to inspect a flattened device tree
(dtb) which is the description of the hardware which
is parsed by the kernel. Dependencies like clocks, pins,
memory regions, etc. are all encoded in this file, defin-
ing a graph of dependencies interconnecting all the
devices in the hardware. Except few, non-connected
nodes of this graph, all the other nodes exhibit one
or more dependencies that must be met also after
the device has been attached to the guest virtual ma-
chine. VOSySzator proposes a novel solution that
analyses such dependencies and tries to satisfy them,
actuating two different functions: the first one tries to
pass-through the dependencies along with the desired
device. This is the most straightforward solution which
might not work all the time as not all devices can be
passed-through. There are some devices that either
because of user’s requirement or for technical reasons
shall stay attached to the host (and thus bound to the
host driver). For example, unbinding a clock controller
from the host would harm the stability and function-
alities of the whole system. In these cases, the second
function is deployed, which creates a dedicated proxy
inside the guest OS to remote the functionality of the
unmet dependency from within the guest to the host
via a vhost-based mechanism. In the example of the
clock controller, a dedicated driver implements a set
of para-virtualized clk_ops operations that forwards
the call to the host (where the call will be actually
validated and actuated).

A well-thought, user-friendly and flexible solution
for device-passthrough brings benefits that are not
exclusively about performance. In fact, the configu-
ration and deployment of virtual machines that can
offer the same set of devices as the host system is a
decisive factor to succeed in running existing BSPs or
system images in the guest system with a few to none
modifications. The host system in this case can be the
very same hardware that originally runs the image, but
also different hardware with the same set of devices.
To support this use case, VOSySzator will provide the
means for the user or system integrator to define a
custom physical layout of the guest memory, which is
also a handy feature to overcome some limitations due
to the lack of an IOMMU.

The concept of device pass-through is not only meant
for embedded scenarios. Also in the cloud, specifically

in HPC applications and services, VFIO can be used to
expose accelerators into the guest, to grant maximum
performance while ensuring the complete isolation of
the HPC tasks [4, 5]. In these scenarios, VOSySzator,
which aims at making the pass-through experience as
integrated and smooth as possible, can help encour-
aging the deployment of RISC-V-based cloud HPC
solutions in those cases where the availability of a few
virtual machines equipped with powerful accelerators
is more important than many general-purpose guests.
To pursue this vision, Virtual Open Systems plans to
add VOSySzator support to the well-known and widely
used libvirt toolkit, making it a drop-in replacement
for other system virtualization solutions.

Conclusions

In embedded systems, virtualization is a powerful con-
cept that gives system designers and integrators the
opportunity to explore new solutions to create new
BSPs, firmwares and system images that are easier
to develop, debug, test and maintain. At the same
time, RISC-V is gaining more and more ground in the
IoT, smart appliances, home automation, automotive,
industrial and, in general, in cyber physical systems
and is expected to gain popularity in cloud systems
as well. In this perspective, VOSySzator aims at pro-
viding the key functionalities to design and implement
system software for this new wave of devices, as well
as to provide the tools to move existing software from
a bare-metal to a virtualized execution, with all the
added value of virtualization.

References

[1] Virtual Open Systems. VOSySzator: Virtualization Frame-
work for Embedded Systems. url: http : / / www .
virtualopensystems.com/en/products/vosyszator/.

[2] Antonios Motakis, Alvise Rigo, and Daniel Raho. “Platform
Device Assignment to KVM-on-ARM Virtual Machines via
VFIO”. In: 2014 12th IEEE International Conference on
Embedded and Ubiquitous Computing. 2014, pp. 170–177.
doi: 10.1109/EUC.2014.32.

[3] Linux VFIO API. url: https : / / docs . kernel . org /
driver-api/vfio.html.

[4] Michail-Alexandros Kourtis et al. “Enhancing VNF per-
formance by exploiting SR-IOV and DPDK packet pro-
cessing acceleration”. In: 2015 IEEE Conference on Net-
work Function Virtualization and Software Defined Net-
work (NFV-SDN). 2015, pp. 74–78. doi: 10.1109/NFV-
SDN.2015.7387409.

[5] Jie Zhang, Xiaoyi Lu, and Dhabaleswar K. Panda. “Per-
formance Characterization of Hypervisor-and Container-
Based Virtualization for HPC on SR-IOV Enabled Infini-
Band Clusters”. In: 2016 IEEE International Parallel and
Distributed Processing Symposium Workshops (IPDPSW).
2016, pp. 1777–1784. doi: 10.1109/IPDPSW.2016.178.

2 RISC-V Summit Europe, Barcelona, 5-9th June 2023

http://www.virtualopensystems.com/en/products/vosyszator/
http://www.virtualopensystems.com/en/products/vosyszator/
https://doi.org/10.1109/EUC.2014.32
https://docs.kernel.org/driver-api/vfio.html
https://docs.kernel.org/driver-api/vfio.html
https://doi.org/10.1109/NFV-SDN.2015.7387409
https://doi.org/10.1109/NFV-SDN.2015.7387409
https://doi.org/10.1109/IPDPSW.2016.178

	Introduction
	VOSySzator supporting RISC-V

	Core Features
	Conclusions

