VOSySzator: A flexible embedded RISC-V system virtualizer
targeting the cloud

www.virtualopensystems.com

Alvise Rigo, Daniel Raho, Samuele Paone, Timos Ampelikiotis

I n t ro d u Ct i o n Host physical memory Guest physical memory

Clock Controller Clock Controller
registers registers

System virtualization in embedded systems is a practice that is commonly used :
in niche use cases and market segments or in very large markets as the !
automotive one. In essence, these virtualization solutions tend to be very ’
specific, tailored to a limited set of hardware. But most of all, these solutions
result to be expensive, given the high development costs of certified software. Kernel clk_ops
There are, however, some products belonging to other market segments that
could also benefit from system virtualization like, for instance, network

equipment, set-top boxes and kiosks. In such cases, due to the lack of flexible

solutions that can be easily tailored to specific use cases, OEMs renounce to Figure 2: In this example, the guest accesses to the clock controller are
mediated by VOSySzator, which guarantees that the clock operations

being called by the guest do not harm the stability of the host system.

VM

VOSySzator

the extra benefits of virtualization (like snapshotting, isolation from the host
kernel, file system overlays, etc.) in favor of more conventional system designs,
believed to be cheaper and easier to maintain.

VOSySzator is meant to democratize virtualization in all markets, by proposing
an accessible solution for system designers and integrators to introduce
virtualization to all those scenarios that for the aforementioned reasons are

The guest access (1) targets a region of guest physical memory instead of
targeting the real hardware. This region is configured to trap the access
(2), letting VOSySzator the duty to handle it. After the needed verification,
the access will be replicated to the real hardware (3).

keeping a more traditional design. As an answer to this, VOSySzator will make
heavy use of device-passthrough, a virtualization technique that allows to
expose a device to the guest Operating Systems, allowing it to have full control
of the device, with almost native performance.

Benefits

A well-thought, user-friendly and flexible solution for device-passthrough
brings benefits that are not exclusively about performance. In fact, the
configuration and deployment of virtual machines that can offer the same set of

Co re featu Fes devices as the host system is a decisive factor to succeed in running existing

BSPs or system images in the guest system with a few to none modifications.

The nature of an embedded system where MMIO devices are used poses a

considerable challenge when it comes to device pass-through as each device BSP

might depend on one or more devices. To have a glimpse of this, it suffices to BSP Image

inspect a flattened device tree (FDT) which is the description of the hardware R
VOSySzator

which is parsed by the kernel. Dependencies like clocks, pins, memory regions,

etc. are all encoded in this file, defining a graph of dependencies

interconnecting all the devices in the hardware.

Figure 3: Running an existing image on top of a system virtualizer

brings various benefits, like snapshotting/checkpointing of the virtual

machine, a fine-grained control over the device accesses and the

possibility to implement flexible OTA solutions that involve minimum
cpu@100 down-time for the guest.

The host system in this case can be the very same hardware that originally runs
,\ the image, but also different hardware with the same set of devices. To support

this use case, VOSySzator will provide the means for the user or system

clock-controller@1190 opp-table-0 integrator to define a custom physical layout of the guest memory, which is also

a handy feature to overcome some limitations due to the lack of an IOMMU.

The concept of device pass-through is not only meant for embedded scenarios.
Also in the cloud, specifically in HPC applications and services, VFIO can be
clock-controller@105b used to expose accelerators into the guest, to grant maximum performance
while ensuring the complete isolation of the HPC tasks. In these scenarios,

VOSySzator, which aims at making the pass-through experience as integrated

Figure 1: Fragment of dependency and smooth as possible, can help encouraging the deployment of RISC-V-
graph derived from the device tree

of an Exynos ARMvS8 board.

clock-controller@10fc . . . ol .
based cloud HPC solutions in those cases where the availability of a few virtual

machines equipped with powerful accelerators is more important than many
general-purpose guests. At last, VOSySzator's trap-and-replicate mechanism
used to proxy guest’s device accesses to the real device can be used to share
the same device with multiple VMs by implementing a thin emulation layer in
VOSySzator.

Except few, non-connected nodes of this graph, all the other nodes exhibit one
or more dependencies that must be met also after the device has been
attached to the guest virtual machine. VOSySzator proposes a novel solution -
that analyses such dependencies and tries to satisfy them without the CO“C' USIOnS
intervention of the user, actuating two different functions: the first one tries to
pass-through the dependencies along with the desired device. This is the most
straightforward solution which might not work all the time as not all devices
can be passed-through.

There are some devices that either because of user’'s requirement or for
technical reasons shall stay attached to the host (and thus bound to the host
driver). For example, unbinding a clock controller from the host would harm
the stability and functionalities of the whole system. In these cases, the second
function is deployed, which creates a dedicated proxy inside the guest OS to
remote the functionality of the unmet dependency from within the guest to the

In embedded systems, virtualization is a powerful concept that gives system

designers and integrators the opportunity to explore new solutions to create
new BSPs, firmwares and system images that are easier to develop, debug, test
and maintain. At the same time, RISC-V is gaining more and more ground in the
loT, smart appliances, home automation, automotive, industrial and, in general,
in cyber physical systems and is expected to gain popularity in cloud systems
as well. In this perspective, VOSySzator aims at providing the key functionalities
to design and implement system software for this new wave of devices, as well
as to provide the tools to move existing software from a bare-metal to a
virtualized execution, with all the added value of virtualization.

host via a vhost-based mechanism as shown in Figure 2.

Funded by the European Union. Views and opinions expressed are, however, those
of the authors only and do not necessarily reflect those of the European Union or the

. HaDEA. Neither the European Union nor the granting authority can be held
’ @VOSySOﬂ:ICIa‘ responsible for them. Project number: 101093062




