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Exploring RISC-V based platforms within 

VPSim simulation tool for High 

Performance Computing
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Context

The VPSim framework was designed to facilitate early-stage computer architecture design by

providing support for SW/HW co-design [1]. It is a modular and highly configurable

framework for:

• Architectural exploration: by providing configurable models to evaluate the

performance of different platform configurations.

• Software design: by providing an enhanced user space to run, profile, and debug

complete software stacks (e.g. BIOS, hypervisor, user space workloads) on the

simulated platform.

VPSim overview
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RISC-V based platforms in VPSim
• The RISC-V Instruction Set Architecture is gaining attention for its open-source nature,

flexibility, and greater customization.

• RISC-V based platforms are increasingly popular in the embedded systems industry.

Designing and implementing RISC-V systems can be time-consuming and effort-intensive. To

address these challenges, virtual prototyping tools have been widely adopted.

• Virtual prototyping enables modeling, simulation, testing, and optimization of complex

systems in early design phases.

• VPSim is a virtual prototyping tool specifically developed for SW/HW co-validation of

computer architectures, including RISC-V based systems.

• VPSim includes a large library of component models: CPU models (RISC-V, ARM, …),

peripherals and memory models.

• The main supported model provider in VPSim is the open source system emulator QEMU

[2], which allows unmatched simulation speed.

• VPSim integrates QEMU by running its CPU and peripheral models within SystemC

threads. These QEMU models are enriched with performance information [3].

• VPSim stands out for its capacity to accommodate external subsystems through different

standard and non-standard interfaces like SystemC, FMI, Python, and HW designs [4, 5].

VPSim Platform Overview

VPSim: Virtual Prototyping Simulator

Platform composition and simulation

RISC-V single core platform

Snippet of a basic single RISC-V core platform composition in VPSim

RISC-V core as an accelerator

• VPSim provides a user-friendly interface to compose and build virtual platforms using an in-house

Domain Specific Language (DSL) based on Python.
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Describe

• The user 
describes the 
targeted platform 
in Python script.

Build

• VPSim builds 
the platform, 
incorporating 
provided 
software 
binaries.

• set up the 
SystemC/TLM 
simulation 
kernel.

Simulate

• One VPSim 
binary can 
simulate infinite 
configs.

• The user can 
control the 
simulation at a 
high level.

• Software 
Debugging and 
profiling.

VPSim Workflow

• VPSim presents a valuable solution for HW/SW designers to quickly evaluate and refine their designs

while minimizing associated time and costs.

• It offers an extensive range of performance counters and statistics for profiling and benchmarking

purposes while ensuring a commendable trade-off between precision and execution time.

• Continual improvements are being made to VPSim, introducing a host of new features that enhance its

capabilities and yield superior results for evaluation and benchmarking purposes.
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The retrieved performance counters and statistics after simulation can be classified into:

• Functional counters: focus on instruction counts, including the number of instructions, cache

performance and memory accesses.

• Time-related counters: involve simulated time and associated factors, such as memory bandwidth

and latencies.

from riscv_platform import FullSystem

config = {

'platform_name': 'RISCV_VP',

'cpu': {

'cores': 1,

'cores_per_cluster': 1,

},

'ram': [

{

'base': 0x40000000,

'size': 0x100000000

}

],

'uarts': [

{ 

'type': 'NS16550Uart',  

'name': 'uart0',    

'base': 0x8000000,

'irq': 11

}

],

# Next

'software': {

...

},

'memory_subsystem': {

'simulate': True,

'cache': {

'l1-data': {

'size': 64*1024,

'line-size': 64,

'associativity': 4,

'latency-ns': 0,

},

'l1-instructions': {

...

},

},

'noc': {

...

},

},

}

if __name__ == '__main__':
sys = FullSystem(config)

stats = sys.build(simulate=True, silent=False,)
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