
200

7

Exploring RISC-V based platforms within

VPSim simulation tool for High

Performance Computing

References

Context

The VPSim framework was designed to facilitate early-stage computer architecture design by

providing support for SW/HW co-design [1]. It is a modular and highly configurable

framework for:

• Architectural exploration: by providing configurable models to evaluate the

performance of different platform configurations.

• Software design: by providing an enhanced user space to run, profile, and debug

complete software stacks (e.g. BIOS, hypervisor, user space workloads) on the

simulated platform.

VPSim overview

[1] Amir Charif, Gabriel Busnot, Rania Mameesh, Tanguy Sassolas, and Nicolas Ventroux. 2019. Fast Virtual Prototyping for Embedded Computing Systems Design and Exploration. In Proceedings of the Rapid Simulation and Performance Evaluation: Methods and Tools (RAPIDO '19).

[2] F. Bellard. 2005. QEMU, a Fast and Portable Dynamic Translator. In Proceedings of the FREENIX Track: 2005 USENIX Annual Technical Conference, Anaheim, CA, USA.

[3] Fatma Jebali, Oumaima Matoussi, Arief Wicaksana, Amir Charif, and Lilia Zaourar. 2022. Decoupling processor and memory hierarchy simulators for efficient design space exploration. In System Engineering for constrained embedded systems (DroneSE and RAPIDO).

[4] Salah Eddine Saidi, et al., 2019. Fast Virtual Prototyping of Cyber-Physical Systems using SystemC and FMI: ADAS Use Case. In Proceedings of the 30th International Workshop on Rapid System Prototyping (RSP '19).

[5] Cinzia Bernardeschi, Pierpaolo Dini, Andrea Domenici, Ayoub Mouhagir, Maurizio Palmieri, et al.. Co-simulation of a Model Predictive Control System for Automotive Application. CoSim-CPS 2021

RISC-V based platforms in VPSim
• The RISC-V Instruction Set Architecture is gaining attention for its open-source nature,

flexibility, and greater customization.

• RISC-V based platforms are increasingly popular in the embedded systems industry.

Designing and implementing RISC-V systems can be time-consuming and effort-intensive. To

address these challenges, virtual prototyping tools have been widely adopted.

• Virtual prototyping enables modeling, simulation, testing, and optimization of complex

systems in early design phases.

• VPSim is a virtual prototyping tool specifically developed for SW/HW co-validation of

computer architectures, including RISC-V based systems.

• VPSim includes a large library of component models: CPU models (RISC-V, ARM, …),

peripherals and memory models.

• The main supported model provider in VPSim is the open source system emulator QEMU

[2], which allows unmatched simulation speed.

• VPSim integrates QEMU by running its CPU and peripheral models within SystemC

threads. These QEMU models are enriched with performance information [3].

• VPSim stands out for its capacity to accommodate external subsystems through different

standard and non-standard interfaces like SystemC, FMI, Python, and HW designs [4, 5].

VPSim Platform Overview

VPSim: Virtual Prototyping Simulator

Platform composition and simulation

RISC-V single core platform

Snippet of a basic single RISC-V core platform composition in VPSim

RISC-V core as an accelerator

• VPSim provides a user-friendly interface to compose and build virtual platforms using an in-house

Domain Specific Language (DSL) based on Python.

Conclusion & Perspectives

Paris-Saclay University, CEA, List, F-91120 Palaiseau, France (firstname.lastname@cea.fr)

Ayoub MOUHAGIR, Mohamed BENAZOUZ, Lilia ZAOURAR

Describe

• The user
describes the
targeted platform
in Python script.

Build

• VPSim builds
the platform,
incorporating
provided
software
binaries.

• set up the
SystemC/TLM
simulation
kernel.

Simulate

• One VPSim
binary can
simulate infinite
configs.

• The user can
control the
simulation at a
high level.

• Software
Debugging and
profiling.

VPSim Workflow

• VPSim presents a valuable solution for HW/SW designers to quickly evaluate and refine their designs

while minimizing associated time and costs.

• It offers an extensive range of performance counters and statistics for profiling and benchmarking

purposes while ensuring a commendable trade-off between precision and execution time.

• Continual improvements are being made to VPSim, introducing a host of new features that enhance its

capabilities and yield superior results for evaluation and benchmarking purposes.

UARTRAM

Configurable coherent NoC

Peripherals

RISC-V
QEMU

Accelerator

ARM
Quad-core

GPP

RISC-V
QEMU

L1 I$

UARTRAM

Bus Interconnect

L1 D$

ACKNOWLEDGMENT

This work has been performed in the context of the European Processor Initiative (EPI) project, which has

received funding from the European Union's Horizon 2020 research and innovation program under Grant

Agreement № 826647 and Specific Grant Agreement № 101036168 (EPI SGA2).

The retrieved performance counters and statistics after simulation can be classified into:

• Functional counters: focus on instruction counts, including the number of instructions, cache

performance and memory accesses.

• Time-related counters: involve simulated time and associated factors, such as memory bandwidth

and latencies.

from riscv_platform import FullSystem

config = {

'platform_name': 'RISCV_VP',

'cpu': {

'cores': 1,

'cores_per_cluster': 1,

},

'ram': [

{

'base': 0x40000000,

'size': 0x100000000

}

],

'uarts': [

{

'type': 'NS16550Uart',

'name': 'uart0',

'base': 0x8000000,

'irq': 11

}

],

Next

'software': {

...

},

'memory_subsystem': {

'simulate': True,

'cache': {

'l1-data': {

'size': 64*1024,

'line-size': 64,

'associativity': 4,

'latency-ns': 0,

},

'l1-instructions': {

...

},

},

'noc': {

...

},

},

}

if __name__ == '__main__':
sys = FullSystem(config)

stats = sys.build(simulate=True, silent=False,)

RISC-V, ARM
…

I2C, CAN, SPI, UART, …

HW Component Models

PCI-E, VirtioBlk, VirtioNet, …

Memory models (cache, DRAM), NoC

VPSim Monitor
(Debug, Profiling,

Analysis)

Fine grained
statistics

Standard debug tools:
GDB, Wireshark…

VPSim
Platform Builder

SystemC
Simulator

High-level Platform
Composition frontend

(Python, GUI…)

Software
binaries

Simple virtual platform description :
Provides a user-friendly Python DSL to

abstract the underlying complexity

Inter-operability
with external

models & tools

Rich library of
component models

Co-simulation

FMI System

HW HIL

Proxy
components

Any SystemC/TLM 2.0
system (.so)

3rd Party TLM
Subsystems

HW co-emulation
(ZeBu)

HW design

HW prototyping

BlobLoader

Special
components

ElfLoader

