Performance Modeling of CVA6 with Cycle-Based Simulation

Côme Allart\(^1,2,\ast\), Jean Roch Coulon\(^2\), André Sintzoff\(^2\), Olivier Potin\(^1\) and Jean-Baptiste Rigaud\(^1\)

\(^1\)Mines Saint-Étienne, CEA, Leti, Centre CMP, F-13541, Gardanne, France \(^2\)Thales DIS, Meyreuil, France

\(\ast\)come.allart@thalesgroup.com

CONTEXT

- **CVA6\(^1\):** a 32- or 64-bit RISC-V application processor
- In-order, single-issue, 6-stage pipeline
- Has been developed at ETH Zurich as Ariane
- Now maintained by OpenHW Group
- Current performance is 3.09 CoreMark/MHz

How to improve performance further?

1. https://github.com/openhwgroup/cva6

CYCLE-BASED MODEL

- **Goal:** Easily evaluate architecture improvements
- **Input:** RVFI trace from CVA6 (committed instructions only)
- **Output:** Cycle-annotated RVFI trace

Issue

- data hazards \rightarrow Read-after-Write (data dependence)
- structural hazards \rightarrow multiplication
- control hazards \rightarrow \{IQ length (PC discontinuities), BHT, RAS, BTB\} branch prediction

Execute

- load
- store
- mul
- duration \Rightarrow done

Commit

- done?

- RVFI trace \rightarrow Instruction Queue \rightarrow Scoreboard \rightarrow Retired \rightarrow Annotated trace

- cycle execution order

MEASURING MODEL ACCURACY

- Using 2\(^nd\) iteration of CoreMark
- For each instruction i
 - Commit cycle: t_i
 - Duration since previous commit: $\Delta t_i = t_i - t_{i-1}$
- Compare with RTL
- Count of correct results: $\#\{i \mid \Delta t_i^{Model} = \Delta t_i^{RTL}\}$
- Number of executed instructions: $\#\{i\}$

Extrapolating Performance

- Configurable model: up to N issues & M commits/cycle
- 2-issue, 2-commit: 4.54 CoreMark/MHz
- No additional structural hazards considered yet
- No additional optimisations considered yet

PERSPECTIVES

- **Goal:** Go further than 4.54 CoreMark/MHz
 - Exploration of superscalar microarchitectures
 - Performance evaluation using the model
 - Implement the chosen superscalar architecture

These activities are supported by the TRISTAN project funded by the Key Digital Technologies Joint Undertaking (KDT JU) under grant agreements 101095147. The present action reflects only the authors’ view; the European Commission and the JU are not responsible for any use that may be made of the information it contains.

\[\text{Accuracy} = \frac{\#\{i \mid \Delta t_i^{Model} = \Delta t_i^{RTL}\}}{\#\{i\}} = 99.2\%\]