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Abstract

This paper is about CVA6 performance. We introduce a cycle-based model of CVAG core to predict improvement
of architecture modifications without modifying RTL code nor running a design frontend flow. 99.2 % accuracy
has been measured. It is exploited to forecast 4.54 CoreMark/MHz for a 2-wide superscalar CVAG6. Before that,
we measure CVA6 CoreMark/MHz score using a CVA6 parameter to take advantage of fast memory.

Introduction

CVAG6 — formerly Ariane [1] — is a 32- or 64-bit in-
order, single-issue, 6-stage pipeline RISC-V application
processor. It has been developed at ETH Zurich and
is now maintained by OpenHW Group [2].

We focus on evaluation of the RV32IMACB variant
of CVAG, through RTL simulation without taking into
account any considerations of area, power or frequency.

We proceed to an evaluation of CVA6 performance
using a commonly-used metric, the CoreMark/MHz [3].
Then, we propose a cycle-based model of CVA6
pipeline, and we measure its accuracy. Furthermore,
we use this model to estimate performance gain of
architecture modifications, assisting design decisions.

CVA6 CoreMark/MHz score

We are integrating CoreMark into CVAG6 repository
for reproducibility. CoreMark is a program running
in a loop; each iteration represents about 270,000
executed instructions. A lot of cache and branch
misses occur during the first iteration; fewer occur in
the subsequent ones as caches and branch predictors
warm up. CoreMark usually processes the score as
the mean score of hundreds of iterations so that the
misses from the first ones have less impact on the score.
We choose to only perform two iterations and process
score only from the second one to remove the impact
of the warm-up phase while reducing the resource
consumption of simulation.

Previous work [4] evaluated CVA6 at 2.08 Core-
Mark/MHz using a revision from February 2020. Since
then, both CVA6 and GCC have evolved!, improv-

1 CVA6 commit 4f06aa6 and GCC 13.1.0 with -O3 -fno-tree-loop-
distribute-patterns -nostdlib -nostartfiles -funroll-all-loops -
falign-jumps=4 -falign-functions=16
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Figure 1: FEvolution of CVAG performance

ing overall performance by 34 % to reach 2.79 Core-
Mark/MHz as shown on Figure 1.

Enabling bit manipulation extension raises perfor-
mance to 2.86 CoreMark/MHz, as shown on Figure 1.
Performance improvement of 2.6 % seems related to
executed instructions count reduction of 3.6 %.

The insertion of a wait state during memory reads is
not needed for all technologies. Disabling this insertion
raises performance to 3.09 CoreMark/MHz, improving
by 8.1 % the performance of CVAG.

Other complex modifications are possible to reach
better performance. The model introduced in the
following section would help to predict performance
improvements of such modifications before starting
any RTL development process.

Cycle-Based Model

We designed a cycle-based model of CVA6. The input
of the model is a RISC-V Formal Interface (RVFI)
trace from CVAG6 simulation, which logs executed in-
structions. The output of the model is the annotation
of predicted commit cycle number to the RVFI trace
for each instruction.

Instructions are issued in order. Constraints are
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Figure 2: Prediction provided by the model for an N-wide
issue, M -wide commit CVAG.

implemented to make issuing impossible in certain
situations such as data hazards or branch misses. No
cache misses are considered, so loads always have their
best execution time.

To evaluate the accuracy of the model, we run it on
the whole trace of a CoreMark program and perform
matching measurement on the second CoreMark itera-
tion. We measure the delay between each instruction
commit and the previous one At; = ¢; — t;_1 in the
cycle-annotated output RVFI trace. For each instruc-
tion 4, this delay is compared between the model and
the RTL simulation — using a modified version of the
RVFI tracer to annotate cycles. The accuracy is the
proportion of matches, as Equation 1 shows.
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At the time of writing, the model accuracy is 99.2 %.
It is measured on the second iteration of CoreMark.

(1)

Accuracy =

Model exploitation

The model is applied to the second iteration of the
CoreMark with different maximum numbers of issues
and commits per cycle. The results of this experiment
are provided on Figure 2. We observe:

e The performance seems to have a limit when the
core becomes highly superscalar. It must be re-
lated to the in-order constraint; an out-of-order
core would reduce the impact of RAW data hazards
with dynamic scheduling [5].

e Unbalanced N-wide issue and M-wide commit
core has almost the same performance as the
balanced min(N, M)-wide core; which likely has
better area, power consumption and timing.

The model yields a performance of 4.54 Core-
Mark/MHz for a 2-wide superscalar CVAG6.

Discussion

The memory technology is a condition to get the score
of 3.09 CoreMark/MHz. The model is wrong in 0.8 %
of executed instructions, including cache misses. A
superscalar processor could reveal structural hazards
that do not happen in a scalar core; therefore, the
prediction of the model could differ with reality.

Conclusion

We performed CVA6 performance evaluation and re-
ported 2.86 CoreMark/MHz with one latency cycle for
memory reads and 3.09 CoreMark/MHz without it. A
cycle-based model of CVA6 has been introduced, yield-
ing accurate results for 99.2 % of executed instructions.
It was used to evaluate the performance improvement
of a 2-wide superscalar core, resulting in a performance
of 4.54 CoreMark/MHz.

We plan to try several concrete superscalar architec-
tures using the model to evaluate their performance
according to the added structural hazards.

We might also add caches to the model and integrate
it into Spike, the RISC-V ISA Simulator. It would help
software developers, to measure performance of a given
program running on CVA6 without RTL simulation.
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