
CONTEXT
Distributed Architectures Programming Models

References

Towards Simulation of an Unified
Address Space for 128-bit Massively

Parallel Computers
Eduardo Tomasi 1, 2, César Fuguet 1, Christian Fabre 1, Frédéric Pétrot 2

 1 Univ. Grenoble Alpes, CEA, List, F-38000 Grenoble, France
 2 Univ. Grenoble Alpes, CNRS, Grenoble INP, TIMA, F-38000 Grenoble, France

This work was funded by the French National Research Agency (ANR) under grant agreement ANR-21-CE25-0016 (MAPLURINUM)

Within a cluster, memory coherence is ensured by hardware protocols, such that
CPUs and accelerators communicate through a shared memory.

Beyond a cluster, coherence cannot be efficiently guaranteed. Processes in
different clusters do not have access to each other's address space. Data can
only be shared by message passing through the communication network.

A global address space offers a simplified programming model for distributed
systems. It provides a high-level abstraction of the memory, hiding the
complexity associated to its management.

SIMULATION OF A DISTRIBUTED SYSTEM
QEMU

QEMU is an open-source machine emulator. Multiple architectures can be
executed in a single host. It provides a virtual model of an entire machine (CPU,
memory and devices). We chose it for three main reasons:

IT IS FAST
1
It uses dynamic binary
translation (DBT) to
reach very high
simulation speed. Also,
QEMU's scalability on
SMP machines is good
[1].

TCG PLUGIN
2

QEMU plugins provide
interfaces to extend the
simulator and add proper
instrumentation. Plugins
provide a mechanism to
subscribe to events
during translation and
execution of instructions
[2].

RISC-V 128
3
QEMU already has support
for RV128 [3]. Global memory
in HPC might, in the next
decade, exceed 264 bytes. It
allows us to rethink the
software architecture of
supercomputers, including
memory virtualization [4].

Scalability

Fig 1. An example of a typical clustered architecture, as can be found in high
performance computing (HPC).

Cluster

Cluster

Cluster

Cluster Cluster

Cluster

Cluster

n

m

Cluster

Cluster

Cluster

L2$

CPU

i$ d$
CPU

i$ d$
CPU

i$ d$
LLC$

DRAM GPU

NIC

A cluster is a multicore computer that has its own memory hierarchy (multi-level
caches and DRAM) and accelerators (such as GPUs). They are connected to each
other through a high-performance communication network.

Fig 2. Shared Memory is used for parallelism inside a cluster, and Message
Passing for parallelism between clusters.
MPI requires developers to expllictly define the communication and
synchronization points. Also, pointers cannot be shared, which complexifies
the transfer of structured data from one process to another. PGAS, on the
other hand, eliminates the need for explicit communication, but introduces
challenges related to data consistency and synchronization.

Communication Network
Message Passing (e.g., MPI)

Shared Memory (e.g., OpenMP)

Local Memory

Address Space

CPU CPU CPU

Local Memory

Address Space

CPU CPU CPU

Global Memory Global Memory

Address Space

CPU CPU CPU CPU

Global Address Space (e.g., PGAS)

NON-INTRUSIVE WORKLOAD ANALYSIS

Measurements

TCG
PluginsvCPU

Translation
Block (TB)
Translation
Block (TB)
Translation
Block (TB)

MPI Application

QEMU (instance 0) QEMU (instance 1)

QEMU (instance 2) QEMU (instance 3)

Distributed HPC Machine

if (my_rank == 0)

 MPI_Send(...);

else

 MPI_Recv(...);

compute();

...

if (my_rank == 0)

 MPI_Send(...);

else

 MPI_Recv(...);

compute();

...

QEMU Extended with Plugins

Fig 3. How to use QEMU to profile MPI calls.

To retrieve the metrics of interest, we need to monitor the code during
execution. We need to know beforehand the virtual addresses of the MPI
functions in the binary code. Through a QEMU plugin, we can monitor the
translation blocks executed and profile the calls.

We can gather metrics such as: number of instructions during a MPI call, number
of system calls and number of memory accesses.

Results

Syscalls

Function np 1 cluster 2 clusters 4 clusters

MPI Send

5 9 9 10
8 10 10 10
16 11 12 15
32 19 22 -

MPI Recv

5 4 4 4
8 5 5 5
16 11 7 8
32 9 9 -

Table II. Number of syscalls during
MPI calls of NPB-DT.

Table I. Number of syscalls during
MPI calls of NPB-IS.

Syscalls

Function np 1 cluster 2 clusters 4 clusters

MPI Allreduce

1 0 4 634
2 93 41 888
4 78 3656 2379
8 80 5056 2178
16 85 4203 126
32 144 294 -

MPI Alltoallv

1 37 4763 5488
2 59 7627 5809
4 51 8529 6792
8 55 8762 7242
16 65 9756 4361
32 109 10666 -

No plugin insn plugin MPI plugin

np MIPS MIPS Slowdown MIPS Slowdown

1 74.3 64.2 13.6% 40.0 46.1%
2 101.6 80.6 20.7% 48.7 52.0%
4 126.2 92.3 26.9% 53.7 57.4%
8 155.3 97.9 36.9% 60.0 61.3%
16 170.0 101.6 40.2% 64.5 62.1%
32 203.2 102.9 49.3% 72.3 64.4%

Table III. Impact of the plugins during
execution of NPB-IS.

[1] M. Badaroux, S. Miroddi, and F. Petrot, “To Pin or Not to Pin: Asserting the Scalability of QEMU Parallel
Implementation,” in 2021 24th Euromicro Conference on Digital System Design (DSD), Palermo, Italy: IEEE,
Sep. 2021, pp. 238–245. doi: 10.1109/DSD53832.2021.00045.
[2] E. G. Cota and L. P. Carloni, “Cross-ISA machine instrumentation using fast and scalable dynamic
binary translation,” in Proceedings of the 15th ACM SIGPLAN/SIGOPS International Conference on Virtual
Execution Environments, Providence RI USA: ACM, Apr. 2019, pp. 74–87. doi: 10.1145/3313808.3313811.
[3]F. Portas and F. Petrot, “Fast simulation of future 128-bit architectures,” in 2022 Design, Automation &
Test in Europe Conference & Exhibition (DATE), Antwerp, Belgium: IEEE, Mar. 2022, pp. 1131–1134. doi: 10.23919/
DATE54114.2022.9774706.
[4] A. Waterman and K. Asanović, “Chapter 6, RV128I Base Integer Instruction Set, Version 1.7,” in The RISC-V
Instruction Set Manual - Volume I: Unpriviliged ISA, 20191213th ed.The RISC-V Foundation, 2019. [Online].
Available: https://riscv.org/technical/specifications/

