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Within a cluster, memory coherence is ensured by hardware protocols, such that 
CPUs and accelerators communicate through a shared memory.

Beyond a cluster, coherence cannot be efficiently guaranteed. Processes in 
different clusters do not have access to each other's address space. Data can 
only be shared by message passing through the communication network.

A global address space offers a simplified programming model for distributed 
systems. It provides a high-level abstraction of the memory, hiding the 
complexity associated to its management.

SIMULATION  OF A DISTRIBUTED SYSTEM
QEMU

QEMU is an open-source machine emulator. Multiple architectures can be 
executed in a single host. It provides a virtual model of an entire machine (CPU, 
memory and devices). We chose it for three main reasons:

IT IS FAST
1
It uses dynamic binary 
translation (DBT) to 
reach very high 
simulation speed. Also, 
QEMU's scalability on 
SMP machines is good 
[1].

TCG PLUGIN
2

QEMU plugins provide 
interfaces to extend the 
simulator and add proper 
instrumentation. Plugins 
provide a mechanism to 
subscribe to events 
during translation and 
execution of instructions 
[2].

RISC-V 128
3
QEMU already has support 
for RV128 [3]. Global memory 
in HPC might, in the next 
decade, exceed 264 bytes. It 
allows us to rethink the 
software architecture of 
supercomputers, including 
memory virtualization [4].

Scalability

Fig 1. An example of a typical clustered architecture, as can be found in high 
performance computing (HPC).
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A cluster is a multicore computer that has its own memory hierarchy (multi-level 
caches and DRAM) and accelerators (such as GPUs). They are connected to each 
other through a high-performance communication network.

Fig 2. Shared Memory is used for parallelism inside a cluster, and Message 
Passing for parallelism between clusters.
MPI requires developers to expllictly define the communication and 
synchronization points. Also, pointers cannot be shared, which complexifies 
the transfer of structured data from one process to another. PGAS, on the 
other hand, eliminates the need for explicit communication, but introduces 
challenges related to data consistency and synchronization.
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if (my_rank == 0)

    MPI_Send(...);

else

    MPI_Recv(...);

compute();

...

if (my_rank == 0)

    MPI_Send(...);

else

    MPI_Recv(...);

compute();

...

QEMU Extended with Plugins

Fig 3. How to use QEMU to profile MPI calls.

To retrieve the metrics of interest, we need to monitor the code during 
execution. We need to know beforehand the virtual addresses of the MPI 
functions in the binary code. Through a QEMU plugin, we can monitor the 
translation blocks executed and profile the calls.

We can gather metrics such as: number of instructions during a MPI call, number 
of system calls and number of memory accesses.

Results

Syscalls

Function np 1 cluster 2 clusters 4 clusters

MPI Send

5 9 9 10
8 10 10 10
16 11 12 15
32 19 22 -

MPI Recv

5 4 4 4
8 5 5 5
16 11 7 8
32 9 9 -

Table II. Number of syscalls during 
MPI calls of NPB-DT.

Table I. Number of syscalls during 
MPI calls of NPB-IS.

Syscalls

Function np 1 cluster 2 clusters 4 clusters

MPI Allreduce

1 0 4 634
2 93 41 888
4 78 3656 2379
8 80 5056 2178
16 85 4203 126
32 144 294 -

MPI Alltoallv

1 37 4763 5488
2 59 7627 5809
4 51 8529 6792
8 55 8762 7242
16 65 9756 4361
32 109 10666 -

No plugin insn plugin MPI plugin

np MIPS MIPS Slowdown MIPS Slowdown

1 74.3 64.2 13.6% 40.0 46.1%
2 101.6 80.6 20.7% 48.7 52.0%
4 126.2 92.3 26.9% 53.7 57.4%
8 155.3 97.9 36.9% 60.0 61.3%
16 170.0 101.6 40.2% 64.5 62.1%
32 203.2 102.9 49.3% 72.3 64.4%

Table III. Impact of the plugins during 
execution of NPB-IS.
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