
Open-Source RISC-V Vector Test Suites: A
Comparative Analysis

Fatima Saleem1, Umer Imran1, Quswar Abid1 and Dr. Kamran Malik1

110xEngineers, Pakistan

Abstract

Architecture-level verification of RISC-V Vector (RVV) cores presents a complex challenge due to the diverse behavior of
vector instructions under various instruction parameters and core configurations. The vector instruction test suite must be
capable of addressing all legitimate combinations of vector instructions under all the different configurations to accomplish
comprehensive verification targets. In this paper, we present a comparative analysis of seven open-source test suites for
vector ISA: Imperas, RIOS Labs, RISCV-Torture, RISCV-DV, FORCE-RISCV, Yang’s Generator and Tenstorrent. We
provide an objective evaluation of the attributes and coverage of these test suites using the RVV Specification v1.0 as a
reference. Our study reveals that a combination of these test generators can provide a fairly comprehensive verification
strategy for vector cores. On a stand alone basis, FORCE-RISCV covers the complete RVV v1.0 specification upto a VLEN
of 4096. Similarly, Imperas is fairly exhaustive but limited to VLEN of 256.

Introduction

RISC-V is an open-source Instruction Set Architec-
ture (ISA) that offers a wide range of instructions to
enable the efficient processing of data. Among these
instructions are vector instructions, which are used
to process multiple streams of data in parallel. The
RISC-V Vector [1] Architecture Compliance Testing
(VACT) is crucial in ensuring that a specific vector
hardware implementation conforms to the RVV spec-
ification and correctly, as well as completely, imple-
ments the vector instructions. This typically involves
the use of test suites, which are collections of test
cases designed to exercise different aspects of the vec-
tor ISA. The aim is to develop comprehensive RVV
architecture tests that cover not only the full vector
instructions but also the various configuration pa-
rameters defined in RVV like vector register length
(VLEN), register multiplier (LMUL), element width
(SEW), etc.

It is important to note that the vector test suite is
significantly more extensive than the RISC-V scalar
test suite. The vector test suite consists of numer-
ous instructions which can be divided into seven
categories defined in RVV Spec as listed in Table 1
(Column 1). To overcome the challenge [2] of ver-
ifying a RISC-V based vector core, comprehensive
RVV architecture test suites are being developed by
the open-source community. In this paper, we do a
comparative analysis of all seven open-source RVV
test suites to identify the capabilities strengths and
weaknesses of each test suite.

Imperas Vector Test Suite[3] is a very compre-
hensive verification tool for RVV processors. Im-
peras has made available its RISC-V Reference Model

(riscvOVPsim) and a version of its Vector Test Suite
(VTS Community Edition). The VTS Community
Edition offers a variety of pre-built test cases for the
RISC-V Vector Extension. Imperas has only released
its 32-bit vector test suite, which supports VLEN 128b
and 256b only, resulting in reduced coverage of some
of the vector instruction categories.

The RIOS Lab Vector Test Generator [4] is an
RVV automated test generator created by the RIOS
Lab in collaboration with the RISC-V Foundation for
the RISC-V community. The RVV Sail Model, con-
tributed by RIOS Lab, serves as the standard golden
model for executing RVV instructions. By utilizing
the configuration features of the RIOS Labs Vector
Test Generator, users are able to select specific instruc-
tions and set configuration parameters to generate
specific tests. This generator is fully compatible with
the latest RISCOF infrastructure, which is widely
used in RISC-V testing.

RISC-V Torture [5] is a Scala-based test generator
that supports RVV v0.9 specification and generates
tests by integrating predefined randomized test se-
quences. The tests are randomly generated, and at
the end of the test program execution, verification
occurs by comparing the register log with the output
from the Spike ISA simulator. Antmicro used RISC-V
Torture Tests to assess Renode’s RISC-V implementa-
tion.

RISC-V DV [6] s an open-source UVM-based ran-
dom instruction generator that generates tests compli-
ant with RVV v0.9. It provides excellent randomness
and performance. Andes and Google collaborated
to support RVV v0.9 in RISC-V DV. Their upcoming
plans involve including support for RVV v1.0 and
adding hooks to collect vector extension test cover-



Open-Source RISC-V Vector Test Suites: A Comparative Analysis

Table 1: RVV v1.0 instruction coverage by various tests suites

Tests Suites

RVV Categories (Total
Instructions)

Imperas RIOS
Labs

RISCV-
Torture

RISCV-
DV

FORCE-
RISCV

Yang’s
Generator

Tenstorrent

Configuration (3) 3 3 2 2 3 3 3
Loads and Stores (310) 45 141 202 258 310 46 25
Integer Arithmetic (139) 137 133 139 136 139 139 60
Fixed-Point Arithmetic (32) 32 32 32 32 32 32 0
Floating-Point (91) 91 66 89 75 91 88 0
Reduction Operations (16) 16 15 16 16 16 16 0
Mask Operations (15) 15 12 15 15 15 13 5
Permutation (21) 21 17 20 18 21 19 5

Table 2: Comparative Analysis of different RVV test suites

Test Suite Attributes

Test Suite Spec
Version

Suite
Type

Checking
Method

Coverage
Tool

Supported
ISS

Integrated
Core

Imperas 1.0 Tests Signature based riscvOVPsim riscvOVPsim NSITEXE DFP
RIOS Labs 1.0 ATG Self-Checking RISCV-ISAC Sail -NA-
RISCV-Torture 0.9 RTG Signature based -NA- Spike Renode
RISCV-DV 0.9 RTG Signature based -NA- Spike Andes NX27V
FORCE-RISCV 1.0 RTG Signature based riscvOVPsim Handcar -NA-
Yang’s Generator 1.0 ATG Self-Checking -NA- Spike ARA
Tenstorrent 1.0 Tests Self-Checking -NA- Whisper Ocelot

age.
FORCE-RISCV [7] is an Instruction Sequence Gen-

erator (ISG) designed to generate tests for the de-
sign verification of RISCV processors. It utilizes
randomization to select instructions, registers, ad-
dresses, and data for the tests and can produce valid
test sequences with minimal user input. Addition-
ally, FORCE-RISCV includes a set of advanced APIs,
giving the user a high level of control over the in-
struction generation process. Although it supports
the complete RVV v1.0 specification, there is no use
case available demonstrating its integration with any
RVV implementation to ensure its correctness.

Yang’s Vector Test Generator [8] is an Automatic
Test Generator (ATG) developed by Yang Liu, a de-
veloper from PLCT lab. It verifies the RISC-V Vector
implementation. The test generator is written in
GoLang and employs GNU Make to automate the
test generation flow. The generated tests are fully
self-checking, and any verification environment for a
core utilizing the riscv-tests can easily use them.

Tenstorrent Vector Test Suite [9] comprises a col-
lection of binary test files that were produced by
their internal test generator. This generator has the
ability to create a comprehensive range of tests with
numerous repetitions, effectively covering the entire
architectural verification space for vector instructions.

References

[1] “RISCV Vector Spec v1.0”. In: (Sep 2021). url:
https://github.com/riscv/riscv-v-spec.

[2] The challenge of RISC-V Compliance. url: https:
/ / semiengineering . com / toward - risc - v -
compliance/.

[3] “Imperas Tests”. In: (Feb 2023). url: https://
github.com/riscv- ovpsim/imperas-riscv-
tests.

[4] “RIOS Lab ATG”. In: (Dec 2022). url: https:
//github.com/xiwang-x/rvv-atg.

[5] “RISCV-Torture”. In: (Dec 2020). url: https://
github.com/Lampro-Mellon/riscv-torture.

[6] “RISCV-DV”. In: (Feb 2021). url: https : / /
github.com/chipsalliance/riscv-dv.

[7] “FORCE-RISCV”. In: (Jan 2023). url: https://
github.com/openhwgroup/force-riscv.

[8] “Yang’s Generator”. In: (Mar 2023). url: https:
//github.com/ksco/riscv-vector-tests.

[9] “Tenstorrent Tests”. In: (Feb 2023). url: https:
/ / github . com / tenstorrent / riscv _ arch _
tests.

2

https://github.com/riscv/riscv-v-spec
https://semiengineering.com/toward-risc-v-compliance/
https://semiengineering.com/toward-risc-v-compliance/
https://semiengineering.com/toward-risc-v-compliance/
https://github.com/riscv-ovpsim/imperas-riscv-tests
https://github.com/riscv-ovpsim/imperas-riscv-tests
https://github.com/riscv-ovpsim/imperas-riscv-tests
https://github.com/xiwang-x/rvv-atg
https://github.com/xiwang-x/rvv-atg
https://github.com/Lampro-Mellon/riscv-torture
https://github.com/Lampro-Mellon/riscv-torture
https://github.com/chipsalliance/riscv-dv
https://github.com/chipsalliance/riscv-dv
https://github.com/openhwgroup/force-riscv
https://github.com/openhwgroup/force-riscv
https://github.com/ksco/riscv-vector-tests
https://github.com/ksco/riscv-vector-tests
https://github.com/tenstorrent/riscv_arch_tests
https://github.com/tenstorrent/riscv_arch_tests
https://github.com/tenstorrent/riscv_arch_tests

	Introduction

