
Building commercially relevant open source silicon:
The many aspects of Ibex

G. Chadwick1, A. Kurth1, M. van der Maas1, H. Callahan1, lowRISC contributors∗

1lowRISC C.I.C.

Abstract

Ibex [1] is an open source RV32IMCB CPU with a 2 or 3 stage pipeline (configurable at synthesis) targeting
embedded and security applications. It started life as zero-riscy [2] from ETH Zürich who contributed it to
lowRISC [3], and its development is now part of the OpenTitan [4] project.

lowRISC’s aim with Ibex (as with all of the IP it maintains) is not only to make high quality RTL freely
available under a permissive licence, but to ensure it meets the needs of commercial users with the goal of
enabling wide-scale adoption of open source silicon designs. To achieve this, it is not enough to simply make
the RTL available. The code needs to meet high quality standards, be in a form that is usable and familiar for
industry, and to be credible. A core part of credibility is achieving full verification up to the standard required
for commercial tape outs. Crucially the verification framework itself as well as test and coverage plans are
fully open source so they can be properly scrutinised. Regular regression results are published to demonstrate IP
maturity and underscore our long-term commitment to it.

In this proposal we present the collaborative engineering lowRISC and the community have done on Ibex.
There is an overview of the design and configuration options; details of the full UVM based testbench, test suite
and coverage plan; and a discussion on lowRISC’s quality standards.

Ibex Design Overview

Figure 1: The Ibex pipeline

Ibex’s three pipeline stages (see Fig. 1) are instruc-
tion fetch (with optional instruction cache), decode
and execute, and writeback. The pipeline register
between the second and the third stage is optional.
Machine mode and user mode are implemented as
well as a configurable number of PMP regions and the
optional Smepmp extension [5]. The ‘B’ bit manip-
ulation [6] has multiple configurations with different
sub-extensions. The M extension with a hardware mul-
tiplier and divider are optional with various multiplier
implementations trading off size and performance, up
to a single cycle implementation.

As the CPU employed by OpenTitan [4], Ibex has
a number of optional security hardening features to
∗Many, beyond the named authors, have contributed to Ibex see
https://github.com/lowRISC/ibex/blob/master/CREDITS.md

mitigate potential attacks. For example, a dual-core
lockstep configuration where two cores are instanti-
ated is supported. Both see the same inputs, and their
outputs are cross checked so that a security alert can
be triggered if they differ. The register file content,
ICache content, and memory transaction data are pro-
tected with an ECC. The ICache content is scrambled
using the PRINCE cipher [7].

Ibex is written in SystemVerilog following the
lowRISC style guide [8]. This style guide aims to
produce neat, consistent, readable RTL that will work
as intended across a broad range of EDA tools.

Verifying Ibex
The primary Ibex DV environment is a UVM based

testbench written in SystemVerilog. It runs programs
that are randomly generated by RISCV-DV [9] along
with UVM sequences that control timing on the ex-
ternal interfaces, generate bus errors, and stimulate
interrupts and debug requests. As is usual for UVM
test benches all sequence behaviour is configurable and
controlled by constrained randomization.

Checking is performed through co-simulation, where
Ibex is run in lockstep with an instruction set simulator
(ISS). Execution of the ISS and Ibex are cross-checked
(including data side memory accesses) and an error
signalled if there are any discrepancies. The method
employed allows full use of interrupts and debug re-
quests and stimulation of bus errors.

Spike [10] is employed as the ISS used for co-
simulation. Some small modifications are needed to
integrate it into the verification environment. The

RISC-V Summit Europe, Barcelona, 5-9th June 2023 1



co-simulation interface is designed to be generic to
allow the use of alternate ISS programs, such as the
RISCV Sail model [11].

Functional coverage is seperated into two categories:

Architectural Coverage Provided by RISCV-DV.
This examines executed instruction traces and
gathers coverage relating to instructions executed,
including various corner cases of each instruction.

Micro-architectural Coverage Gathered by the
testbench by probing the internals of Ibex. This
covers micro-architectural behaviours such as dif-
ferent stalls and hazards, interrupt and debug be-
haviour and more. A separate set of covergroups
gather metrics over PMP behaviour including see-
ing all possible configurations and combinations
of success and failure plus interesting corner cases
(e.g. accesses crossing PMP region boundaries).

For the ‘opentitan’ configuration of Ibex (3 stage,
with security hardening; bit-manipulation; 16 PMP
regions; and single cycle multiplier) a high degree of
verification has been achieved, with 94% code coverage
and 93% functional coverage across a regression run
of 1380 tests with a pass rate of 94% at the time
of writing. All failing tests are due to verification
environment issues and not RTL bugs. There are no
known RTL bugs.

Setting the Quality Bar
High standards are set for Ibex. To meet these

criteria, lowRISC employs a broad range of industry-
standard techniques. Code review is employed for
all contributions which helps enforce the style guide
and maintain consistency. Continuous integration (CI)
testing must be passed before a contribution is ac-
cepted, this runs a variety of quick tests including a
full lint check which prevents broken code from being
merged. Nightly regressions, using the full DV test
suite, are run and monitored. Test failures are triaged
and fixed as part of day to day work to maintain a
high pass rate. Coverage is monitored and work done
to tweak tests and introduce new ones to achieve the
desired verification closure quality.

Documentation and ‘out of the box’ experience are
also crucial. Ibex is extensively documented, covering
core integration along with micro-architectural, imple-
mentation and verification details. A Verilator [12]
simulation demonstrating use of Ibex is provided. The
Ibex Demo System [13] provides a fuller example that
can be run on an FPGA board.

Making the Most of Open Source
A traditional user of commercially available IP may

be tempted to treat Ibex in the same manner; an
opaque box that implements a required set of features
that is acquired and integrated into a large design, the

only difference being Ibex is obtained entirely free of
charge.

The open source nature of development can offer
users so much more. A user can modify RTL to suit
their needs, adding and removing functionality as
needed. As the testbench and all DV collateral is
available, such changes can be verified quickly by the
user.

Users can contribute changes upstream, allowing
them to introduce new features without needing to
maintain them long-term. By working with lowRISC
and the community, democratised innovation and
maintenance possibilities become available.

Lacking the commercial need to sell updated ver-
sions of IP, users can quickly benefit from new features,
updates to the latest RISC-V specifications and bug
fixes rather than waiting for yearly (or longer) releases.
With no incentive to sell different configurations as
different products users can simply choose amongst
the many configuration options that suit their needs
and easily experiment with others.

Author Biographies
G. Chadwick is Digital Design Lead at lowRISC and
holds a Ph.D. from Cambridge University.
A. Kurth is a Senior Engineer at lowRISC and holds
a Doctor of Science from ETH Zurich.
M. van der Maas is a Senior Engineer at lowRISC
and holds a Ph.D. from Cambridge University.
H. Callahan is an Engineer at lowRISC and holds
an M.Eng. from Oxford University.

References
[1] Ibex. url: https://github.com/lowrisc/ibex.

[2] P.D. Schiavone et al. “Slow and steady wins the race? A
comparison of ultra-low-power RISC-V cores for Internet-
of-Things applications”. In: PATMOS 2017.

[3] lowRISC. url: https://lowrisc.org.

[4] OpenTitan. url: https://opentitan.org.

[5] Smepmp extension. Version 1.0 12/2021. RISC-V Inter-
national.

[6] RISC-V Bit-Manipulation ISA-extensions. Version 1.0.0-
38-g865e7a7. RISC-V International.

[7] Julia Borghoff et al. “PRINCE A Low-Latency Block Ci-
pher for Pervasive Computing Applications”. In: Advances
in Cryptology – ASIACRYPT 2012. 2012, pp. 208–225.

[8] lowRISC style guides. url: https : / / github . com /
lowRISC/style-guides.

[9] RISCV-DV. url: https://github.com/chipsalliance/
riscv-dv.

[10] Spike. url: https://github.com/riscv-software-src/
riscv-isa-sim.

[11] Sail RISC-V Model. url: https://github.com/riscv/
sail-riscv.

[12] Verilator. url: https://www.veripool.org/verilator/.

[13] A demo system for Ibex. url: https://github.com/
lowRISC/ibex-demo-system.

2 RISC-V Summit Europe, Barcelona, 5-9th June 2023

https://github.com/lowrisc/ibex
https://lowrisc.org
https://opentitan.org
https://github.com/lowRISC/style-guides
https://github.com/lowRISC/style-guides
https://github.com/chipsalliance/riscv-dv
https://github.com/chipsalliance/riscv-dv
https://github.com/riscv-software-src/riscv-isa-sim
https://github.com/riscv-software-src/riscv-isa-sim
https://github.com/riscv/sail-riscv
https://github.com/riscv/sail-riscv
https://www.veripool.org/verilator/
https://github.com/lowRISC/ibex-demo-system
https://github.com/lowRISC/ibex-demo-system

	Ibex Design Overview
	Verifying Ibex
	Setting the Quality Bar
	Making the Most of Open Source
	Author Biographies

