
RISC-V Summit Europe, Barcelona, 5-9th June 2023 1

A Micro Arch Design of L1 Cache for GPGPUs Supporting

Release Consistency-directed Coherence Based on RVWMO
Jin Chufeng1,2, Yang Kexiang1,2, Li Jingzhou1,2 and He Hu1,2

1School of Integrated Circuits, Tsinghua University 2International Innovation Center of Tsinghua University, Shanghai

Abstract

Coherence and consistency are critical factors in multi-core processors and parallel programming models. In

this paper, we present an RTL implementation of an L1 vector cache that supports Release Consistency-directed

Coherence (RCC) based on RVWMO for open-source GPGPU, the RISC-V ISA provided consistency model. We

propose a methodology for transforming axiomatic rules into hardware design guidance. Our design aims to

achieve a good performance-cost trade-off for GPGPU cache design. We are currently conducting litmus tests

and performance evaluations to further validate our proposed design.

Introduction

Coherence protocols such as MESI are commonly used in

multi-core CPU processors. However, creating coherence

protocols for General Purpose Graphics Processing Units

(GPGPUs) can be difficult due to the large number of private

L1 caches and the bottleneck in L1-L2 bandwidth. The

Release Consistency-directed Coherence (RCC)[1]

addresses these challenges by performing coherence

operations alongside consistency operations. This eliminates

the need for costly hardware controllers and reduces the

bandwidth required for status transitions.

The open-source ISA RISC-V provides a well-defined

CPU-oriented consistency model called RVWMO[2], which

is a variant of release consistency that is suitable for

implementing RCC. However, this model is primarily

described in an axiomatic manner, which poses a challenge

in guiding hardware implementation.

In this work, we address the gap between axiomatic

RVWMO rules and microarchitecture design guidance for

GPGPUs by proposing an open-source RTL implementation

of an L1 cache that supports RCC. Our proposed architecture

adapts the CPU-centric RVWMO to the GPGPU cache and

leverage RCC to provide coherence functionality.

GPGPU L1 Cache Design & Architecture

The proposed L1 cache is a component of the open-source

GPGPU named “Ventus”. Within the GPGPU, each

streaming multiprocessor has a dedicated L1 memory

subsystem consisting of an instruction cache, scratchpad

memory, vector data cache, and constant cache. All SMs

share a common L2 memory subsystem (L2). This section

takes L1 vector data cache as an example.

To fully leverage the benefits of the RCC, the "write back"

policy has been adopted to minimize the write bandwidth

consumption between L1 and L2. Similarly, the "write non-

allocate" policy has been set to avoid fetching missing cache

lines when a write miss occurs.

To support the large parallelism requirement of GPGPUs,

we employ a non-blocking cache, which allows for multiple

concurrent outstanding misses. This functionality is

facilitated by a module called the Missing Status Holding

Register (MSHR), which manages regular read misses, load

reserved, store conditional, and atomic operations that are

sent to the L2 cache. The MSHR is also responsible for

recovering the LSU response when the corresponding L2

request returns. Furthermore, the MSHR is capable of

merging upcoming read misses access the same cache line.

To enable data SRAM vector element access in "Ventus",

vector memory access instructions are checked and split into

coalescing cache requests in the LSU. Coalescing requests

only access elements that fall into a single cache line.

Figure 1 Simplified cache timing behavior

As Figure 1 shows, The SRAM access cannot be

completed within a single clock cycle. This characteristic

dominant the pipeline design of cache microarchitecture.

Here is an abstract for LSU request pipeline:

• Stage0: Send probe to tag array and MSHR;

• Stage1: According to request type and probe result: new

entry in L2 request queue and MSHR, access data array;

• Stage2: New entry in LSU response queue from data array.

RCC Design Methodology under RVWMO

Release Consistency provides “Acquire” or “Release”

semantics to indicate its constraint. In Release Consistency-

directed Coherence[2], the combination of “Release” with

dirty cache line flush and “Acquire” with L1 global

invalidation satisfies the coherence requirement.

This section will begin by breaking down RVWMO rules

into a more hardware-friendly form. Next, we will scrutinize

and refine the hardware design to ensure RVWMO

compliance in the absence of auxiliary consistency

operations. Finally, we will concentrate on translating these

consistency operations (combined with coherence

2 RISC-V Summit Europe, Barcelona, 5-9th June 2023

operations) into microarchitectural behaviors to complete

the RCC cache design under RVWMO.

Breaking Down Axiomatic Consistency Rules

RVWMO defines three axioms[1], one of which is the PPO

Axiom consisting of 13 specific PPO rules. In the “Ventus”

architecture, PPO rules 9-13 are resolved by the front-end

scoreboard before instructions reach the LSU of execution

stage.

Consistency control operations in RVWMO include the

FENCE instruction in RV32I, as well as the .aq (Acquire)

and .rl (Release) qualifiers in RV32A[1], which together

form PPO rules 4-8.

FENCE R,RW has close semantics to .aq qualifier, but

stronger. FENCE RW,W and .rl have a similar relationship.

Therefore, the use of successive FENCE R,RW can serve as

a straightforward implementation of .aq, thereby the use of

preceding FENCE RW,W for release semantics.

Without taking device I/O into account, it is possible to

derive all variants of FENCE from 4 fundamental types:

FENCE R,R ; FENCE R,W ; FENCE W,R ; FENCE W,W.

Hardware Operational Model without

Auxiliary Consistency Operations

In the design process of cache microarchitecture, the

prioritization of memory fetch functionality over the

ordering of return values is paramount, particularly when

selecting a relaxed model that imposes minimal constraints

on memory orders. Consequently, the hardware framework

must first be established before embarking on a consistency-

conformant design phase. During this phase, meticulous

attention is devoted to conforming with the regular memory

access orders, in accordance with PPO rule 1-2.
Table 1 Hardware operational model, regular W&R

*W for Write, R for Read; iO for in-ordered, OoO for out-of-order; H for cache hit, M for cache miss.

 Access the same cache line Access different cache lines

Cases R-R W-W W-R R-W R-R W-W W-R R-W

RVWMO

PPO
Rule 2 Rule 1 No Rule 1 No No No No

HW

behavior
iO iO OoO iO OoO OoO OoO OoO

WSHR

guard
No Yes Yes Yes

OoO/guard

cases

Except

H-H
M/H-M M-M M-M/H H-M/H H-M M-M/H

Operational and axiomatic models differ in their focus: the

former specifies "which actions can" be performed, while the

latter specifies "which actions cannot" be performed. Table

1 shows the operational model of our proposed cache design.

A module called Write Status Holding Register (WSHR) is

used to prevent erroneous reordering of L2 access when

accessing the same cache line, thereby enforcing both the

PPO rule 1-2 and the Load Value Axiom.

Mapping Consistency Operations to

Microarchitectural Behaviors

To support the 4 fundamental variants of FENCE for

enforcing PPO rule 4-7, as well as to provide coherence

operations for RCC, it is necessary to leverage all the

microarchitectural operations that can be provided:

• MSHR drain: Wait all regular miss, LR, SC and AMO

return from L2. Necessary for FENCE R,R, FENCE R,W;

• WSHR drain: Wait all write return from L2. Necessary

for FENCE W,R, FENCE W,W;

• Flush: Write back all dirty lines, contains a precede

WSHR drain. Necessary for FENCE W,R, FENCE W,W;

• Global Invalidation: invalidate all lines, contains precede

flush and MSHR drain. Sufficient for all FENCE type.

Table 2 presents the mapping from microarchitectural

operations to FENCE variants to implement PPO rule 4-7.

After this step we have successfully deployed PPO rule

1,2,4-7,9-13, Load Value Axiom, and RCC. The remain PPO

rule 3 and 8 can be enforced by additional L2 request

checking.
Table 2 Final mapping between HW and RVWMO

RVWMO

operation
.aq .rl

FENCE

R,R

FENCE

W,W

FENCE

W,R

FENCE

R,W

HW Invalidation Flush Invalidation Flush Invalidation
MSHR

drain

Evaluation

Our proposed design is simulated using a C++ cycle-

accurate model (https://github.com/Auyuir/cacheCmodel)

and implemented using the Chisel HDL

(https://github.com/THU-DSP-LAB/ventus-gpgpu). When

synthesized using SMIC40 process and specialized SRAM,

our proposed design(configurated as 64KB) achieves a

frequency of 370MHz and an area of 1319901.1 𝜇𝑚2, of

which 736150.7 𝜇𝑚2 are SRAM(worst PVT variation).

Validating that the implementation satisfies the promised

consistency model is a challenging task, ranging from formal

proofs to litmus tests. The derivation process in last section

is also a type of manual checking process. To further ensure

the rigor of our design, we are also subjecting it to the

RVWMO litmus test set.

Conclusion

We present a microarchitecture design of an L1 vector

cache for open-source GPGPU “Ventus” that supports

Relaxed Consistency-directed Coherence based on the

RVWMO. Additionally, we provide a systematic approach

for decomposing the axiomatic rules of RVWMO into

hardware design specifications for RCC.

References

[1] Nagarajan, V., Sorin, D. J., et al. A primer on memory

consistency and cache coherence. 2nd. Morgan & Claypool

Publishers. 2020

[2] Andrew W., Krste A.. The RISC-V Instruction Set

Manual, Volume I: User-Level ISA. V20191213. RISC-V

Foundation. December 2019

https://github.com/Auyuir/cacheCmodel
https://github.com/THU-DSP-LAB/ventus-gpgpu

