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Abstract 

Coherence and consistency are critical factors in multi-core processors and parallel programming models. In 

this paper, we present an RTL implementation of an L1 vector cache that supports Release Consistency-directed 

Coherence (RCC) based on RVWMO for open-source GPGPU, the RISC-V ISA provided consistency model. We 

propose a methodology for transforming axiomatic rules into hardware design guidance. Our design aims to 

achieve a good performance-cost trade-off for GPGPU cache design. We are currently conducting litmus tests 

and performance evaluations to further validate our proposed design. 

Introduction 

Coherence protocols such as MESI are commonly used in 

multi-core CPU processors. However, creating coherence 

protocols for General Purpose Graphics Processing Units 

(GPGPUs) can be difficult due to the large number of private 

L1 caches and the bottleneck in L1-L2 bandwidth. The 

Release Consistency-directed Coherence (RCC)[1] 

addresses these challenges by performing coherence 

operations alongside consistency operations. This eliminates 

the need for costly hardware controllers and reduces the 

bandwidth required for status transitions. 

The open-source ISA RISC-V provides a well-defined 

CPU-oriented consistency model called RVWMO[2], which 

is a variant of release consistency that is suitable for 

implementing RCC. However, this model is primarily 

described in an axiomatic manner, which poses a challenge 

in guiding hardware implementation. 

In this work, we address the gap between axiomatic 

RVWMO rules and microarchitecture design guidance for 

GPGPUs by proposing an open-source RTL implementation 

of an L1 cache that supports RCC. Our proposed architecture 

adapts the CPU-centric RVWMO to the GPGPU cache and 

leverage RCC to provide coherence functionality. 

GPGPU L1 Cache Design & Architecture 

The proposed L1 cache is a component of the open-source 

GPGPU named “Ventus”. Within the GPGPU, each 

streaming multiprocessor has a dedicated L1 memory 

subsystem consisting of an instruction cache, scratchpad 

memory, vector data cache, and constant cache. All SMs 

share a common L2 memory subsystem (L2). This section 

takes L1 vector data cache as an example. 

To fully leverage the benefits of the RCC, the "write back" 

policy has been adopted to minimize the write bandwidth 

consumption between L1 and L2. Similarly, the "write non-

allocate" policy has been set to avoid fetching missing cache 

lines when a write miss occurs. 

To support the large parallelism requirement of GPGPUs, 

we employ a non-blocking cache, which allows for multiple 

concurrent outstanding misses. This functionality is 

facilitated by a module called the Missing Status Holding 

Register (MSHR), which manages regular read misses, load 

reserved, store conditional, and atomic operations that are 

sent to the L2 cache. The MSHR is also responsible for 

recovering the LSU response when the corresponding L2 

request returns. Furthermore, the MSHR is capable of 

merging upcoming read misses access the same cache line. 

To enable data SRAM vector element access in "Ventus", 

vector memory access instructions are checked and split into 

coalescing cache requests in the LSU. Coalescing requests 

only access elements that fall into a single cache line.

 
Figure 1 Simplified cache timing behavior 

As Figure 1 shows, The SRAM access cannot be 

completed within a single clock cycle. This characteristic 

dominant the pipeline design of cache microarchitecture. 

Here is an abstract for LSU request pipeline: 

• Stage0: Send probe to tag array and MSHR; 

• Stage1: According to request type and probe result: new 

entry in L2 request queue and MSHR,  access data array; 

• Stage2: New entry in LSU response queue from data array. 

RCC Design Methodology under RVWMO 

Release Consistency provides “Acquire” or “Release” 

semantics to indicate its constraint. In Release Consistency-

directed Coherence[2], the combination of “Release” with 

dirty cache line flush and “Acquire” with L1 global 

invalidation satisfies the coherence requirement.  

This section will begin by breaking down RVWMO rules 

into a more hardware-friendly form. Next, we will scrutinize 

and refine the hardware design to ensure RVWMO 

compliance in the absence of auxiliary consistency 

operations. Finally, we will concentrate on translating these 

consistency operations (combined with coherence 
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operations) into microarchitectural behaviors to complete 

the RCC cache design under RVWMO. 

Breaking Down Axiomatic Consistency Rules 

RVWMO defines three axioms[1], one of which is the PPO 

Axiom consisting of 13 specific PPO rules. In the “Ventus” 

architecture, PPO rules 9-13 are resolved by the front-end 

scoreboard before instructions reach the LSU of execution 

stage. 

Consistency control operations in RVWMO include the 

FENCE instruction in RV32I, as well as the .aq (Acquire) 

and .rl (Release) qualifiers in RV32A[1], which together 

form PPO rules 4-8. 

FENCE R,RW has close semantics to .aq qualifier, but 

stronger. FENCE RW,W and .rl have a similar relationship. 

Therefore, the use of successive FENCE R,RW can serve as 

a straightforward implementation of .aq, thereby the use of 

preceding FENCE RW,W for release semantics. 

Without taking device I/O into account, it is possible to 

derive all variants of FENCE from 4 fundamental types: 

FENCE R,R ; FENCE R,W ; FENCE W,R ; FENCE W,W.  

Hardware Operational Model without 

Auxiliary Consistency Operations 

In the design process of cache microarchitecture, the 

prioritization of memory fetch functionality over the 

ordering of return values is paramount, particularly when 

selecting a relaxed model that imposes minimal constraints 

on memory orders. Consequently, the hardware framework 

must first be established before embarking on a consistency-

conformant design phase. During this phase, meticulous 

attention is devoted to conforming with the regular memory 

access orders, in accordance with PPO rule 1-2.  
Table 1 Hardware operational model, regular W&R 

*W for Write, R for Read; iO for in-ordered, OoO for out-of-order; H for cache hit, M for cache miss. 

 Access the same cache line Access different cache lines 

Cases R-R W-W W-R R-W R-R W-W W-R R-W 

RVWMO 

PPO 
Rule 2 Rule 1 No Rule 1 No No No No 

HW 

behavior 
iO iO OoO iO OoO OoO OoO OoO 

WSHR 

guard 
No Yes Yes Yes     

OoO/guard 

cases 
 

Except 

H-H 
M/H-M M-M M-M/H H-M/H H-M M-M/H 

Operational and axiomatic models differ in their focus: the 

former specifies "which actions can" be performed, while the 

latter specifies "which actions cannot" be performed. Table 

1 shows the operational model of our proposed cache design. 

A module called Write Status Holding Register (WSHR) is 

used to prevent erroneous reordering of L2 access when 

accessing the same cache line, thereby enforcing both the 

PPO rule 1-2 and the Load Value Axiom. 

Mapping Consistency Operations to 

Microarchitectural Behaviors 

To support the 4 fundamental variants of FENCE for 

enforcing PPO rule 4-7, as well as to provide coherence 

operations for RCC, it is necessary to leverage all the 

microarchitectural operations that can be provided: 

• MSHR drain: Wait all regular miss, LR, SC and AMO 

return from L2. Necessary for FENCE R,R, FENCE R,W; 

• WSHR drain: Wait all write return from L2. Necessary 

for FENCE W,R, FENCE W,W; 

• Flush: Write back all dirty lines, contains a precede 

WSHR drain. Necessary for FENCE W,R, FENCE W,W; 

• Global Invalidation: invalidate all lines, contains precede 

flush and MSHR drain. Sufficient for all FENCE type. 

Table 2 presents the mapping from microarchitectural 

operations to FENCE variants to implement PPO rule 4-7. 

After this step we have successfully deployed PPO rule 

1,2,4-7,9-13, Load Value Axiom, and RCC. The remain PPO 

rule 3 and 8 can be enforced by additional L2 request 

checking. 
Table 2 Final mapping between HW and RVWMO 

RVWMO 

operation 
.aq .rl 

FENCE 

R,R 

FENCE 

W,W 

FENCE 

W,R 

FENCE 

R,W 

HW Invalidation Flush Invalidation Flush Invalidation 
MSHR 

drain 

Evaluation 

Our proposed design is simulated using a C++ cycle-

accurate model (https://github.com/Auyuir/cacheCmodel) 

and implemented using the Chisel HDL 

(https://github.com/THU-DSP-LAB/ventus-gpgpu). When 

synthesized using SMIC40 process and specialized SRAM, 

our proposed design(configurated as 64KB) achieves a 

frequency of 370MHz and an area of 1319901.1 𝜇𝑚2, of 

which 736150.7 𝜇𝑚2 are SRAM(worst PVT variation). 

Validating that the implementation satisfies the promised 

consistency model is a challenging task, ranging from formal 

proofs to litmus tests. The derivation process in last section 

is also a type of manual checking process. To further ensure 

the rigor of our design, we are also subjecting it to the 

RVWMO litmus test set. 

Conclusion 

We present a microarchitecture design of an L1 vector 

cache for open-source GPGPU “Ventus” that supports 

Relaxed Consistency-directed Coherence based on the 

RVWMO. Additionally, we provide a systematic approach 

for decomposing the axiomatic rules of RVWMO into 

hardware design specifications for RCC. 
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