Background & Novelty

On-chip memory pursues many desirable characteristics such as high
throughput, low latency, and low cost. However, without functional
correctness as a prerequisite, these characteristics are merely illusory.
This work:

1. the 15t open-source microarchitectural solution for GPGPU cache that
take consistency and coherence into design consideration.

2. Adapts the RISC-V CPU-centric consistency model RVWMO to GPGPU.
3. Leverage Release Consistency-directed Coherence(RCC) to provide
coherence functionality, reducing both the
burden on programming frameworks and the
complexity of hardware
implementation.

directe herence

RISC-V Weak ry Ordering

b RISC-\V/C

Intro to Memory Consistency & GPU Cache Coherence
In multi-core/multi-thread scenarios, the consistency problem can arise
from out-of-order (Oo0O) execution. Different consistency models with
varying degrees of strictness can lead to different valid execution results

for the same multi-threaded program.

/*A, B, Flag with init value 0
assume 0 and 1 share memory directly*/

A=1 B=1
//HW thread 0 //HW thread 1 A,
A=1; while (Flag==0) {};//spin | &8l ,_ o 4 =+ B=
B e 1,. prlntf (“A=%d\n” ,A) : rESUIt A:O B:l
Flag = 1; printf (“B=%d\n”,B) ; A=0 B=0

GPU caches typically do not implement hardware coherence due to the
significant area cost and bandwidth consumption. However, this does not
preclude the need for synchronization between private caches, which can
be accomplished using explicit cache operations such as flush or invalidate.

GPGPU L1 Cache Design & Architecture

N LSU L
> o > » data LSU resp >
/] reg tag array
LSU : > 4;D—> array queue
request . ' . : LSU
' > ol A:D > LSU resp response
' ipe re pipe reg
: - : . | Stage 2:
. > |
N L2 resp S MSHR L2 req L2 req >
/| (LAHEEE ! queue pipe reg
L2 ' ,| L2 res ! : L2
response I pipe rez : WSHR ! request
- Stage 0 | Stage 1 |
| I :
~ Legend
1. Vector cache receive coalesced e9en
request. LSU split uncoalesced SRAM|| [Queue | |Register

I

I pipeline

Lo LSU t | register
y response 3 request

instructions into multiple Jata path data path

coalesced cache request.
2. Write-back and write-around.
3. Forward AMO/LR/SC to L2, record in-flight request in special MSHR.

4. Record regular read miss and write miss that hit in- [LSU Reg pipe]

stage 1

flight read miss in vector MSHR, to realize non-blocking
cache without violate data dependency.

regular R/W LR/SC/AM

hit

hit / miss ?

U resp Q full:

N

update tag

!

2 req Q full?
N Y
N
. v

A Micro Arch Design of L1 Cache for GPGPUs Supporting Release

Consistency-directed Coherence Based on RVWMO
Jin Chufeng 1,2, Yang Kexlang 1,2, LI Jingzhou 1,2 and He Hu 1,2

1 School of Integrated Circuits, Tsinghua University 2 International Innovation Center of Tsinghua University, Shanghali

Implementation of Axiomatic RVWI\/IO In Micro Arch

1 2 91011 1213
9 oad Ammsc q \ () | R | 0 o
o Addr/ctrl/ [addrldata]' rfi”
‘ Overlap ‘ ‘ Overlap ‘ D‘verlap ‘ Fence ‘ dat; ;EL “addr;po”
N Ak A
Store Load ‘ Load o .rl aq 1 SC P ., o
except “rsw” with pr/pw/sr/sw - " except ctrl deps.
and “fri;rfi” set appropriately RCsc where B is a load

PPO Rule 1-2: For hardware operational model without auxiliary
consistency operations, use Write Status Holding Register(WSHR) to check
and prevent regular memory operations from violating PPO 1-2 or Load

Value Axiom.
*W for Write, R for Read; iO for in-ordered, OoO for out-of-order; H for cache hit, M for cache miss.

R-R W-W W-R R-W R-R W-W W-R R-W
Rule 2 Rule 1 No Rule 1 No No No No
i0 i0 0]e]0 i0 0]e]0 000 0]e]0 000
No Yes Yes Yes
Except H-

¥ M/H-M M-M M-M/H H-M/H H-M M-M/H

PPO Rule 4-7: For
RVWMO consistency
operations(RV32l FENCE,
RV32A .aqg & .rl identifier),
mapping them to
corresponding

Drain write N but not S for FWw Mmicroarchitectural

WoRR behavigr.
(3) (include a subsequent (2))N but not S for F W,R @

(1) Wait L2 response for all N but not S for F R,R
Drain regular read misses, LR, S for FR,W
MSHR SCand AMO

) Wait L2 response for all N but not S for F W,R

. . . NJLSU req _ 1 : :
Global write all dirty cache line S for F WW 1 e |[] g ey 2D F_,’ aray L?,‘u’ef:"]@
Flush to L2 o [LsU req 2 >fLsuresn C es

. . . : .ﬂ PIpeTEs Stage 2!
@ (include ? prgcedlng @ S for all FENCE, include J\@ R T IR
Global and (1)) invalidate all FR,R; FW,R " Catese — Cl) CQUEted) | Ipipereg -
Invalidate cache line *1 !Stage0 [PPSO giaget m -

Implementation of RCC in Micro Arch

Release Consistency provides “Acquire” or “Release” semantics to indicate
its constraint. In Release Consistency-directed Coherence, the combination
of “Release” with dirty cache line flush and “Acquire” with L1 global
invalidation satisfies the coherence requirement.

(4)Global (3)Global (4)Global (1)Drain (4)Global (3)Global
Invalidate Flush

Invalidate MSHR Invalidate Flush

- .aq identifier .rlidentifier = FENCE R,R FENCERW FENCEW,R FENCE WW
quwre a”nd “Release” quuwe a”nd None A{c{:quwe a”nd “Release”
Release Release Release

Comparison & Result

Vector access V V V
Non-blocking cache V V V V V
Atomic instruction No RTL V V V V
Release consistency micro arch Vv Vv Vv
Invalidate V V V V
Flush V V V V V V

In the table below, the number on the left of each column indicates the
typical delay cycles for the corresponding request type when there is no
blocking in the corresponding signal path. The numbers on the right of
each column indicate potential blocking scenarios.

c Reg - c Rsp ae 4 ah-b 4 ah-b
access data Y
@ c Regq—mReq 4 bdf 4 bcd 4 bdfgh 4 h-bcd 4 h-bed
N(SecondaryAv avail? - lN ! C Req — data 3
MSHR new MRsp—-cRsp 4 aij 4 a
Y(Primary Avail) MSHR new | | L21eq Q | | gpecial entry :
2 req Q full?
R W v Req
L2 req Q
mark dirty L2 req Q =nd U resp Q full m Rsn - data 3
N ESFAvald LSU resp Q full a MSHR not empty e MSHR subentry = 2 i
h 4 update LSU A 4 :
v MSHR new resp pipe reg not ready at current ¢ L2 req Q full b MSHR full f Replacement occur]
update LSU main entry S update LSU Write status holding register full ¢ LR - SC g
resp pipe reg resp pipe reg _
WSHR protection Dirty cache line exist h
Synthesis using SMIC (N IMaK eueney MUArea T
v =
ready at current Open SOUFCe Wlth VentUS GPGPU 40nm process and SRAM 420MHz 736,150.7[.17712
pipe reg
538,390.2um?2

| https://github.com/THU-DSP-LAB/ventus-gpgpu specialized SRAM. Others 320MHz

v

(o

C++ cycle accurate model
https://github.com/Auyuir/cacheCmodel

worst PVT variations. Total 320MHz 1319,901.1um2

https://github.com/THU-DSP-LAB/ventus-gpgpu
https://github.com/Auyuir/cacheCmodel

