Background & Novelty

On-chip memory pursues many desirable characteristics such as high
throughput, low latency, and low cost. However, without functional
correctness as a prerequisite, these characteristics are merely illusory.
This work:

1. the 15t open-source microarchitectural solution for GPGPU cache that
take consistency and coherence into design consideration.

2. Adapts the RISC-V CPU-centric consistency model RVWMO to GPGPU.
3. Leverage Release Consistency-directed Coherence(RCC) to provide
coherence functionality, reducing both the
burden on programming frameworks and the
complexity of hardware
implementation.
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Intro to Memory Consistency & GPU Cache Coherence
In multi-core/multi-thread scenarios, the consistency problem can arise
from out-of-order (Oo0O) execution. Different consistency models with
varying degrees of strictness can lead to different valid execution results

for the same multi-threaded program.

/*A, B, Flag with init value 0
assume 0 and 1 share memory directly*/

A=1 B=1
//HW thread 0 //HW thread 1 A,
A=1; while (Flag==0) {};//spin | &8l ,_ o 4 =+ B=
B e 1,. prlntf (“A=%d\n” ,A) : rESUIt A:O B:l
Flag = 1; printf (“B=%d\n”,B) ; A=0 B=0

GPU caches typically do not implement hardware coherence due to the
significant area cost and bandwidth consumption. However, this does not
preclude the need for synchronization between private caches, which can
be accomplished using explicit cache operations such as flush or invalidate.

GPGPU L1 Cache Design & Architecture
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3. Forward AMO/LR/SC to L2, record in-flight request in special MSHR.
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Implementation of Axiomatic RVWI\/IO In Micro Arch
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PPO Rule 1-2: For hardware operational model without auxiliary
consistency operations, use Write Status Holding Register(WSHR) to check
and prevent regular memory operations from violating PPO 1-2 or Load

Value Axiom.
*W for Write, R for Read; iO for in-ordered, OoO for out-of-order; H for cache hit, M for cache miss.
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Implementation of RCC in Micro Arch

Release Consistency provides “Acquire” or “Release” semantics to indicate
its constraint. In Release Consistency-directed Coherence, the combination
of “Release” with dirty cache line flush and “Acquire” with L1 global
invalidation satisfies the coherence requirement.
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Comparison & Result

Vector access V V V
Non-blocking cache V V V V V
Atomic instruction No RTL V V V V
Release consistency micro arch Vv Vv Vv
Invalidate V V V V
Flush V V V V V V

In the table below, the number on the left of each column indicates the
typical delay cycles for the corresponding request type when there is no
blocking in the corresponding signal path. The numbers on the right of
each column indicate potential blocking scenarios.
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C++ cycle accurate model
https://github.com/Auyuir/cacheCmodel
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