

A Micro Arch Design of L1 Cache for GPGPUs Supporting Release Consistency-directed Coherence Based on RVWMO

Jin Chufeng 1,2, Yang Kexiang 1,2, Li Jingzhou 1,2 and He Hu 1,2 1 School of Integrated Circuits, Tsinghua University 2 International Innovation Center of Tsinghua University, Shanghai

Background & Novelty

On-chip memory pursues many desirable characteristics such as high throughput, low latency, and low cost. However, without **functional correctness** as a prerequisite, these characteristics are merely illusory. This work:

1. the 1st open-source microarchitectural solution for GPGPU cache that take **consistency and coherence** into design consideration.

Adapts the RISC-V CPU-centric consistency model **RVWMO** to GPGPU.
Leverage **Release Consistency-directed Coherence(RCC)** to provide

Release Consistencydirected Coherence coherence functionality, reducing both the burden on programming frameworks and the complexity of hardware

RISC-V Weak Memory Ordering implementation.

Implementation of Axiomatic RVWMO in Micro Arch

PPO Rule 1-2: For hardware operational model without auxiliary consistency operations, use Write Status Holding Register(WSHR) to check and prevent regular memory operations from violating PPO 1-2 or Load Value Axiom.

*W for Write, R for Read; iO for in-ordered, OoO for out-of-order; H for cache hit, M for cache miss.

		Ac	cess the sa	me cache	line	Ac	Access different cache lines								
Cases	Cases		W-W	W-R	R-W	R-R	W-W	W-R	R-W						
RVWMO	PPO	Rule 2	Rule 1	No	Rule 1	No	No	No	No						
HW beha	vior	iO	iO	000	iO	000	000 000		000						
WSHR gu	lard	No	Yes	Yes	Yes										
OoO/gu cases	ard		Except H- H	M/H-M	M-M	M-M/H	H-M/H	H-M	M-M/H						
Micro arch behavior	Description			Ef ("F" fo (N for N S for S	ffect or FENCE) Vecessary, oufficient)	PPO RVW oper	PPO Rule 4-7: For RVWMO consistency operations(RV32I FENCE,								
① Drain MSHR	Wait regul SC an	L2 respons ar read mis d AMO	e for all sses, LR,	N but not S <mark>S for F R,W</mark>	S for F R,R	RV32 map	RV32A .aq & .rl identifier), mapping them to								
2 Drain WSHR	Wait L2 response for all write			N but not S N but not S	5 for F W,R 5 for F W,W	corre micre beha	microarchitectural behavior.								
3 Global Flush	(include a subsequent 2) write all dirty cache line to L2			N but not S <mark>S for F W,</mark> W	5 for F W,R /	LSU req reg	st LSU req reg tag array LSU req pipe req LSU resp pipe req LSU resp pipe req								
④ Global Invalidate	(inclu and (cache	ide a prece 1) invalidate line	ding ③ ate all	S for all FE F R,R; F W,	NCE, includ R	C L2 resp queue	L2 resp queue Ise Stage 0 Stage 1 Stage 1 Stage 1 Stage 1 Stage 1 Stage 2 L2 req pipe reg L2 req pipe reg L2 req L2 req L								

Intro to Memory Consistency & GPU Cache Coherence

In multi-core/multi-thread scenarios, the consistency problem can arise from out-of-order (OoO) execution. Different consistency models with varying degrees of strictness can lead to different valid execution results for the same multi-threaded program.

/*A, B, Flag with init value 0		Sequential Consistency	Relaxed Consistency
//WW thread 0 //WW thread 1			A=1 B=1
A = 1; while (Flag==0) {}; //spin	Legal	∧−1 R−1	A=1 B=0
$B = 1; printf(``A=%d\n'',A);$	result	A-I D-I	A=0 B=1
Flag = 1; $printf("B=%d n'',B);$			A=0 B=0

GPU caches typically do not implement hardware coherence due to the significant area cost and bandwidth consumption. However, this does not preclude the need for synchronization between private caches, which can be accomplished using explicit cache operations such as flush or invalidate.

GPGPU L1 Cache Design & Architecture

Implementation of RCC in Micro Arch

Release Consistency provides "Acquire" or "Release" semantics to indicate its constraint. In Release Consistency-directed Coherence, the combination

2. Write-back and write-around.

3. Forward AMO/LR/SC to L2, record in-flight request in special MSHR.

LSU Req pipe

lid req at pipe reg

stage 1

4. Record regular read miss and write miss that hit inflight read miss in vector MSHR, to realize non-blocking cache without violate data dependency.

of "Release" with dirty cache line flush and "Acquire" with L1 global invalidation satisfies the coherence requirement.

Micro arch	(4)Global	(3)Global	(4)Global	(1) Drain	(4)Global	3 Global
behavior	Invalidate	Flush	Invalidate	MSHR	Invalidate	Flush
RVWMO						
Consistency	.aq identifier	.rl identifier	FENCE R,R	FENCE R <i>,</i> W	FENCE W,R	FENCE W,W
Semantics						
Attached RCC	"Acquiro" and		"Acquiro" and		"Acquire" and	
Coherence	"Roloaco"	"Release"	"Roloaco"	None	"Roloaco"	"Release"
Function(s)	Release		Release		Release	

Comparison & Result

feature	MICRO22 Vortex	HotChips15 MIAOW	HotChips10 NV Fermi	HotChips17 NV Volta	HotChips12 AMD GCN	This work
Vector access	V	V	\checkmark	V	\checkmark	V
Non-blocking cache	V		V	V	V	V
Atomic instruction		No RTL	V	V	V	V
Release consistency		micro arch		V	V	V
Invalidate			V	V	V	V
Flush	V	V	V	V	\checkmark	V

In the table below, the number on the left of each column indicates the typical delay cycles for the corresponding request type when there is no blocking in the corresponding signal path. The numbers on the right of each column indicate potential blocking scenarios.

req type Regular Regular Regular Regular LR/SC/ Wait Flush Invalidate

	read n		ad miss	iss read nit		write miss w		W	rite hit	AIVIO		M2HK					
WSHR empty?	c Req – c Rsp			4	а	4	ab	4	а			4	ae	4	a h-b	4	a h-b
	c Req – m Req	4	bdf			4	bcd			4	bdfgh			4	h-bcd	4	h-bcd
	c Req – data							3									
L2 req Q full?	m Rsp – c Rsp	4	aij							4	а						
L2 req Q enq	m Rsp – m Req	4	j-bcd														
	m Rsp - data	3															
LSU resp Q full?	blocking scenario	os f	or LSU	req an	nd L2	ble LS	ocking s SU req	scer	narios o	nly	/ for	blo res	ocking so sp	ena	arios on	ly f	or L2
清空所有valid	LSU resp Q full			á	а	MS	SHR not	em	pty		е	MS	SHR sube	ntry	/≥2		i
	L2 req Q full			I	b	MS	SHR full				f	Re	placemei	nt o	ccur		j
update LSU	Write status holdin	g re	egister fu	ll o	С	LR	R – SC				g						
resp pipe reg	WSHR protection			(d	Di	rty cache	e lin	e exist		h						
			Sy	/nth	esis	us	ing SN	/ (C		Ma	x fr	requenc	y	Α	rea	
Open Source with Ventus GPGPU			4(40nm process and			SRAN	Л	420	420MHz		7	736,150.7µm2		m2		
https://github.com/THU-DSP-LAB/ventus-gpgpu			<mark>pu</mark> sp	specialized SRAM.		Othe	rs	320	320MHz		5	538,390.2µm2		m2			
C++ cycle accurate model			W	orst	PV٦	Γ va	ariatio	ns	5. Total		320	MF	lz	1	.319,90	1.1	μ m2
https://github.com/Auyuir/cacheCmodel																	

ready at current pipe reg

pe reg

finish