
1 2 3 4 5 6 7 8 9 10 11 12 13

A Micro Arch Design of L1 Cache for GPGPUs Supporting Release

Consistency-directed Coherence Based on RVWMO
Jin Chufeng 1,2, Yang Kexiang 1,2, Li Jingzhou 1,2 and He Hu 1,2

1 School of Integrated Circuits, Tsinghua University 2 International Innovation Center of Tsinghua University, Shanghai

Background & Novelty
On-chip memory pursues many desirable characteristics such as high
throughput, low latency, and low cost. However, without functional
correctness as a prerequisite, these characteristics are merely illusory.
This work:
1. the 1st open-source microarchitectural solution for GPGPU cache that
take consistency and coherence into design consideration.

feature MICRO22
Vortex

HotChips15
MIAOW

HotChips10
NV Fermi

HotChips17
NV Volta

HotChips12
AMD GCN

This work

Vector access √ √ √ √ √ √

Non-blocking cache √

No RTL
micro arch

√ √ √ √

Atomic instruction √ √ √ √

Release consistency √ √ √

Invalidate √ √ √ √

Flush √ √ √ √ √ √

Regular

read miss

Regular

read hit

Regular

write miss

Regular

write hit

LR/SC/

AMO

Wait

MSHR

Flush Invalidate

c Req – c Rsp 4 a 4 ab 4 a 4 ae 4 a h-b 4 a h-b

c Req – m Req 4 bdf 4 bcd 4 bdfgh 4 h-bcd 4 h-bcd

c Req – data 3

m Rsp – c Rsp 4 aij 4 a

m Rsp – m

Req

4 j-bcd

m Rsp - data 3
blocking scenarios for LSU req and L2

resp

blocking scenarios only for

LSU req

blocking scenarios only for L2

resp

LSU resp Q full a MSHR not empty e MSHR subentry ≥ 2 i

L2 req Q full b MSHR full f Replacement occur j

Write status holding register full c LR – SC g

WSHR protection d Dirty cache line exist h

2. Adapts the RISC-V CPU-centric consistency model RVWMO to GPGPU.
3. Leverage Release Consistency-directed Coherence(RCC) to provide

coherence functionality, reducing both the
burden on programming frameworks and the

complexity of hardware
implementation.RISC-V Weak Memory Ordering

Release Consistency-

directed Coherence

GPGPU L1 Cache Design & Architecture

1. Vector cache receive coalesced
request. LSU split uncoalesced
instructions into multiple
coalesced cache request.
2. Write-back and write-around.
3. Forward AMO/LR/SC to L2, record in-flight request in special MSHR.
4. Record regular read miss and write miss that hit in-
flight read miss in vector MSHR, to realize non-blocking
cache without violate data dependency.

Intro to Memory Consistency & GPU Cache Coherence
In multi-core/multi-thread scenarios, the consistency problem can arise
from out-of-order (OoO) execution. Different consistency models with
varying degrees of strictness can lead to different valid execution results
for the same multi-threaded program.

GPU caches typically do not implement hardware coherence due to the
significant area cost and bandwidth consumption. However, this does not
preclude the need for synchronization between private caches, which can
be accomplished using explicit cache operations such as flush or invalidate.

//HW thread 0

A = 1;

B = 1;

Flag = 1;

//HW thread 1

while(Flag==0){};//spin

printf(“A=%d\n”,A);

printf(“B=%d\n”,B);

/*A, B, Flag with init value 0

assume 0 and 1 share memory directly*/

Sequential
Consistency

Relaxed
Consistency

Legal
result

A=1 B=1

A=1 B=1

A=1 B=0

A=0 B=1

A=0 B=0

Implementation of Axiomatic RVWMO in Micro Arch

Access the same cache line Access different cache lines

Cases R-R W-W W-R R-W R-R W-W W-R R-W

RVWMO PPO Rule 2 Rule 1 No Rule 1 No No No No

HW behavior iO iO OoO iO OoO OoO OoO OoO

WSHR guard No Yes Yes Yes
OoO/guard

cases
Except H-

H
M/H-M M-M M-M/H H-M/H H-M M-M/H

*W for Write, R for Read; iO for in-ordered, OoO for out-of-order; H for cache hit, M for cache miss.

PPO Rule 1-2: For hardware operational model without auxiliary
consistency operations, use Write Status Holding Register(WSHR) to check
and prevent regular memory operations from violating PPO 1-2 or Load
Value Axiom.

PPO Rule 4-7: For
RVWMO consistency
operations(RV32I FENCE,
RV32A .aq & .rl identifier),
mapping them to
corresponding
microarchitectural
behavior.

Micro arch
behavior

Description

Effect
(“F” for FENCE)

(N for Necessary,
S for Sufficient)

①
Drain
MSHR

Wait L2 response for all
regular read misses, LR,
SC and AMO

N but not S for F R,R
S for F R,W

②
Drain
WSHR

Wait L2 response for all
write

N but not S for F W,R
N but not S for F W,W

③
Global
Flush

(include a subsequent ②)
write all dirty cache line
to L2

N but not S for F W,R
S for F W,W

④
Global

Invalidate

(include a preceding ③
and①) invalidate all
cache line

S for all FENCE, include
F R,R; F W,R ①

②

③、④

Implementation of RCC in Micro Arch

Data path
req type

Release Consistency provides “Acquire” or “Release” semantics to indicate
its constraint. In Release Consistency-directed Coherence, the combination
of “Release” with dirty cache line flush and “Acquire” with L1 global
invalidation satisfies the coherence requirement.

Micro arch
behavior

④Global
Invalidate

③Global
Flush

④Global
Invalidate

①Drain
MSHR

④Global
Invalidate

③Global
Flush

RVWMO
Consistency
Semantics

.aq identifier .rl identifier FENCE R,R FENCE R,W FENCE W,R FENCE W,W

Attached RCC
Coherence
Function(s)

“Acquire” and
“Release”

“Release”
“Acquire” and

“Release”
None

“Acquire” and
“Release”

“Release”

Comparison & Result

In the table below, the number on the left of each column indicates the
typical delay cycles for the corresponding request type when there is no
blocking in the corresponding signal path. The numbers on the right of
each column indicate potential blocking scenarios.

Max frequency Area

SRAM 420MHz 736,150.7𝜇𝑚2

Others 320MHz 538,390.2𝜇𝑚2

Total 320MHz 1319,901.1𝜇𝑚2

Open Source with Ventus GPGPU

https://github.com/THU-DSP-LAB/ventus-gpgpu
C++ cycle accurate model

https://github.com/Auyuir/cacheCmodel

Synthesis using SMIC
40nm process and
specialized SRAM.
worst PVT variations.

https://github.com/THU-DSP-LAB/ventus-gpgpu
https://github.com/Auyuir/cacheCmodel

