
Open source verification environment for RISC-V
Josep Sans1, Alberto Moreno1, Àlex Torregrosa1 and Roger Espasa1

1Semidynamics

Abstract

The paper presents a fully open source verification environment to test and debug RISC-V cores and the IPs that
compose them. The verification environment is built around Verilator, and extended with different open source
libraries to complete a fully UVM-compliant verification environment, which can be run in any platform, without
requiring any license. This allows high parallelism, which (1) speeds up the execution of the regression set, and
(2) enables usage of a resource-hungry coverage driven verification methodology. Furthermore, Verilator’s code
translation style from RTL to C++ also enables the use of fuzzing techniques for the DUT, which further helps
increase overall coverage.

Introduction

In contrast to the software world, where most develop-
ment tools are open-source and freely available, in RTL
projects all the necessary tools that allow to simulate
and functionally verify the RTL code require expensive
commercial licenses. The lack of open-source tools in
this field makes it very expensive to acquire a suffi-
cient number of licenses to parallelize the amounts of
simulation hours to properly test and verify large RTL
designs.

Even though there are license free simulators like
ModelSim[1], or open-source simulators like Icarus
Verilog[2], they lack the sufficient language features to
build complex test benches to fully verify non-trivial
RTL projects like a floating point unit, a memory
pipeline, or a RISC-V core.

Thankfully there is another tool that takes a dif-
ferent approach to how to simulate an RTL design:
Verilator[3]. Verilator transpiles the SystemVerilog
RTL code into C++, generating a functional equiv-
alence model of the RTL design. Later on, this new
model can be extended with code that composes the
testbench, resulting in a complete verification environ-
ment that does not require any license to run. The
only limitation is the number of CPU cores available
in order to run simulations.

This paper explores the viability of Verilator and
different open-source libraries in order to build an open-
source environment to verify a RISC-V core. It will
also talk about the different verification approaches
we have used for taking advantage of the verification
environment described in the paper, in order to verify
our RISC-V cores and their internal modules.

The software stack

In order to build up the open source verification en-
vironment we will use the following tools: Verilator,
UVM-SystemC library, FC4SC1 library[4], Spike[5]
and all the existent C++ tools that are generally avail-
able (compilers, debuggers, performance analysis, ...).
Figure 1 shows the integration of the different tools
and libraries.

Verilator

Verilator is an open-source tool that is able to transpile
RTL code written in Verilog or SystemVerilog into a
C++ model that can be later compiled and executed.
Since Verilator is more a compiler than a simulator,
the generated model can be instantiated in a wrapper
along with the test bench code having as a result
an executable containing the RTL functional model
and its test bench. It is also a good alternative to
commercial simulators as the code generated it usually
runs faster.

UVM-SystemC

UVM is one of the more widely adopted verification
libraries in the industry. The port of the UVM library
into the System-C runtime enables the use of the same
verification concepts already established and to reuse
all the existing knowledge in order to build the test
benches.

FC4SC

One of the big handicaps Verilator has is the lack of
integrated coverage analysis tools. Currently, Verilator
only provides toggle coverage information. To provide
support for functional coverage in the testbench the
FC4SC library can be used in order to be able to

1 Functional Coverage for System-C

RISC-V Summit Europe, Barcelona, 5-9th June 2023 1



replicate the coverage directives the SystemVerilog
language has.

Spike

Spike is one of the most up to date RISC-V open-source
simulators with the latest ratified RISC-V extensions.
Although it does not provide a public API, the sim-
ulator code can be easily modified to create a set of
endpoints to interact with Spike from the test bench.
This allows creating a co-simulation environment with
Spike and the RTL design, checking at each clock that
the design under test (i. e. the RISC-V core) internal
state is correct.

Figure 1: Verilator software stack

RISC-V core use cases

For our RISC-V cores verification, we use a coverage-
driven random test generation methodology [6]. While
this methodology is great to explore corner cases of the
design, it is resource hungry. Our methodology uses
a genetic algorithm that creates a pool of tests (i. e.
the population), runs them on the simulator, obtains
coverage metrics, and uses this metrics to create a
new pool of tests based on crossover of the previous
generation tests. Best results are obtained when the
population is large; however a large population requires
running a large number of test cases, which is either
expensive or slow in commercial simulators. This
scenario is ideal for the open-source Verilator based
verification environment, since allows us to greatly
parallelize the tests runs, thanks to the fact that we
are not limited by the number of licenses in order to
run the simulations.

Another benefit we obtain from using Verilator is
that it allows using a fuzzing technique (a common
technique in the software world) to generate tests
that increase coverage[7]. Since the generated C++
is a direct translation of the SystemVerilog code, its
coverage is highly correlated to the RTL code coverage.
This has allowed us to use state-of-the-art fuzzing tools,
like AFL++[8] to drive the constrained test generation
for some internal modules of our RISC-V cores. These
tools tend to produce minimum-size tests, which are
easier to debug, and, in the case of AFL++, includes
scripts to triage and minimize tests.

Conclusions

In this paper, we propose an open-source verification
environment for RISC-V cores and RTL IPs that yields
the best simulation cycle per cost ratio. All the men-
tioned strategies have been used by us in order to
verify industry level RISC-V cores, both at top and
unit level.

As the open-source tools presented in this paper
gain momentum, the more contributors will appear,
and the more completed and up to spec the tools will
be. As an example, Verilator, already has support
for event driven simulations, and in the near future,
there will be support for native SystemVerilog UVM,
making Verilator an excellent tool to run large numbers
of regressions without needing to adapt the test bench
using the UVM-SystemC library.

References

[1] Siemens. RTL and gate level behavioral simulator. url:
https://eda.sw.siemens.com/en-US/ic/modelsim/.

[2] Stephen Williams. ICARUS Verilog Compilation System.
url: https://github.com/riscv-software-src/riscv-
isa-sim.

[3] Wilson Snyder. Open source SystemVerilog simulator and
lint system. url: https://www.veripool.org/verilator/.

[4] Functional coverage for System-C. url: https://github.
com/amiq-consulting/fc4sc.

[5] Riscv-Software-Src. RISCV-software-src/RISCV-isa-SIM:
Spike, a RISC-v isa simulator. url: https://github.com/
riscv-software-src/riscv-isa-sim.

[6] F. Corno, F. Cumani, and G. Squillero. “Exploiting Auto-
adaptive µGP for Highly Effective Test Programs Genera-
tion”. In: Evolvable Systems: From Biology to Hardware.
Ed. by AAndy M. Tyrrell, Pauline C. Haddow, and Jim
Torresen. Berlin, Heidelberg: Springer Berlin Heidelberg,
2003, pp. 262–273. isbn: 978-3-540-36553-2.

[7] Timothy Trippel et al. “Fuzzing Hardware Like Software”.
In: USENIX Security Symposium. 2021.

[8] Andrea Fioraldi et al. “AFL++: Combining Incremental
Steps of Fuzzing Research”. In: 14th USENIX Workshop on
Offensive Technologies (WOOT 20). USENIX Association,
Aug. 2020.

2 RISC-V Summit Europe, Barcelona, 5-9th June 2023

https://eda.sw.siemens.com/en-US/ic/modelsim/
https://github.com/riscv-software-src/riscv-isa-sim
https://github.com/riscv-software-src/riscv-isa-sim
https://www.veripool.org/verilator/
https://github.com/amiq-consulting/fc4sc
https://github.com/amiq-consulting/fc4sc
https://github.com/riscv-software-src/riscv-isa-sim
https://github.com/riscv-software-src/riscv-isa-sim

	Introduction
	The software stack
	Verilator
	UVM-SystemC
	FC4SC
	Spike

	RISC-V core use cases
	Conclusions

