
RISC-V Summit Europe, Barcelona, 5-9th June 2023 1

Recent Achievements of the Open-Source CVA6 Core: FPGA

Optimizations, Coprocessor Acceleration, Yocto Linux Support

Sébastien Jacq1, Jean-Roch Coulon2, Kevin Eyssartier1, Jérôme Quévremont1

1Thales Research & Technology, Palaiseau, France
2Thales Secure Silicon, Meyreuil, France

Summary

In this extended abstract, recent contributions to the CORE-V CVA6 open-source RISC-V application core are

presented: (1) the FPGA optimizations that reduce by 55% the resources while increasing performance by 40%;

(2) the CV-X-IF coprocessor interface to extend and speed up the supported instruction set and (3) the

availability of the Yocto embedded Linux distribution for 32- and 64-bit versions of the core. These contributions

are available from open-source repositories and are brought to the first cooperative projects implementing the

roadmap for European sovereignty on open-source hardware, software and RISC-V.

Introduction

CORE-V CVA6 is an open-source RISC-V application

core and the related project running at the OpenHW Group.

The core exists in two versions that share the same

SystemVerilog source code [1]: the CV32A6 (32-bit) and the

CV64A6 (64-bit). The CV64A6 originates from ARIANE,

developed by the PULP team [2]. The CV32A6 is a later

enhancement, designed by Thales.

Besides the choice between a 32- and a 64-bit core, the

CVA6 is highly configurable: e.g. the MMU, the PMP, the

FPU, the performance counters and the compressed

instructions are optional. The L1 cache can be customized

according to multiple parameters such as the storage method

(write-back/write-through), the size and the number of ways.

One year ago, the CVA6 project was introduced at the

RISC-V Spring Week 2022 [3][4]. This year, the focus is on

some results recently achieved on the CVA6: resource and

frequency optimizations for FPGA targets, integration of a

coprocessor interface and support of the popular Yocto

embedded Linux distribution generator.

Optimizations for FPGA Targets

Today, each FPGA manufacturer offers a proprietary soft

processor (Xilinx’s Microblaze, Intel’s Nios-II…). When

changing FPGA supplier, it is necessary to overhaul the

complete design: new proprietary soft core, new SoC

architecture, complete re-compilation of the software

applications… Changing the FPGA supplier creates the risk

of reduced performance. Moreover, this generates additional

development costs related to the use of different tool chains.

With the CV32A6, our challenge is to offer a competitive

and FPGA technology-agnostic soft core. For this, it was

necessary to optimize the microarchitecture of the CV32A6

for FPGA targets, as it was originally developed for ASICs.

The first set of optimizations have reduced the amount of

logic resources used (look-up tables and flip-flops) through

several CV32A6 microarchitecture modules, such as the

RV32C decoder, the branch prediction unit, the instruction

and data caches, the register file, the performance counters,

the scoreboard, or the memory management unit (MMU).

For instance, the MMU has gained a second level of

translation lookaside buffers (TLBs) implemented in SRAM

to reduce the size of the first level of TLBs implemented with

flip-flops. This allowed to increase the number of TLBs

while reducing the resource usage.

The second set of optimizations has increased the

processor frequency by breaking critical timing paths.

Table 1 presents the key performance indicators obtained

on a Xilinx FPGA.

Table 1: Key performance indicators of CVA6, including MMU and

L1 caches on Xilinx Kintex 7 FPGA (XC7K325T-2)
 Original CV32A6 Optimized version Evolution

Look-up tables 18,103 8,077 −55%

Flip-flops 11,484 4,403 −61%

DSP blocks 4 4 -

Block RAM 36 12 −67%

Max. freq. 100 MHz 140 MHz +40%

CoreMark/MHz 2.8 2.8 -

CoreMark 280 392 +40%

Thanks to these optimizations, CV32A6 is a credible

alternative to technology-specific cores for ASIC and FPGA

developments, especially for teams relying on several

technology providers.

Domain-Specific Acceleration

There is today no standard bus interface to connect

coprocessors to a RISC-V processor. This is why some

OpenHW members have specified the CV-X-IF extension

interface [6]. CV-X-IF enables the extension of the

instruction set supported by a RISC-V processor without any

change in the RTL source code of the processor (cf.

figure 1). When the processor decodes an instruction that it

2 RISC-V Summit Europe, Barcelona, 5-9th June 2023

cannot execute, the instruction is offloaded to the

coprocessor. Such instruction can be a custom one or can

belong to any RISC-V extension, including compressed

instructions. The coprocessor can also submit memory

requests to the processor through CV-X-IF. In CVA6, CV-

X-IF is the only implementation that handles speculation to

increase performance. CV-X-IF is an opportunity to

accelerate access to coprocessors, to implement domain-

specific instructions without CPU impact, and to promote

the interoperability of CPU cores and coprocessors.

As of today, the instruction offloading is implemented in

CVA6. The memory access and compressed instructions

through CV-X-IF will be implemented in future projects. An

OpenHW Group project is currently validating the

specification by implementing it on several OpenHW

CORE-V processor cores including CVA6.

Figure 1: CV-X-IF coprocessor interface with CVA6 pipeline

Embedded Linux Support

Yocto is a popular generator of Linux distribution for

embedded systems. It allows access to a wide catalog of

ports of popular applications and frameworks, and handles

the whole embedded complexity with a packaged SDK and

easy deployment.

Thanks to our recent contribution, both CV32A6 and

CV64A6 now support a Yocto-based state of the art RISC-

V software tooling.

The OpenSBI firmware implements RISC-V SBI

(Supervisor Binary Interface) which allows the execution of

privileged operations by the bootloader and the supervisor

mode. This firmware will ease future development e.g. on

multi-core or performance counters support for Linux. U-

Boot bootloader now supports CVA6 and allows to boot

from an SDCard or through TFTP booting. Linux 5.10.7

kernel support has been added and is packaged in a Yocto

layer [5]. On-board porting has been achieved through

different kernel and embedded debugging techniques such as

source offsetting and log_buf dumping.

A debug demonstration project is also available. It

performs a hands-on debug of both bare-metal and Linux

software through the Eclipse integrated development

environment. Command line interface is also available.

This work leverages the RISC-V open-source ecosystem

and allows contributors and users to quickly run a Linux

distribution on CVA6.

Conclusion

In this abstract, recent CVA6 advances were presented that

are readily available as open-source from the OpenHW

Group’s repositories. CVA6 is an ongoing project and more

is to come in a near future. Among the team’s plans are

further performance optimizations, improvements in the

core’s documentation and the industrial-grade verification of

some 32- and 64-bit configurations of the core, targeting the

quality needed for production of integrated circuits.

More open-source contributions from SMEs and the

industry are desired, to deliver more, quicker and better for

the community and have a positive impact on systems-on-

chips and FPGAs embedding CVA6.

The growth of the RISC-V open-source ecosystem is key

to European technology sovereignty as exposed in [7]. As a

building block of the two first projects that implement this

roadmap (TRISTAN and upcoming ISOLDE), CVA6

should bring a competitive advantage to the European

industry.

References

[1] https://github.com/openhwgroup/cva6/

[2] Zaruba, F., Benini, L. “The cost of application-class

processing: Energy and performance analysis of a Linux-

ready 1.7-GHz 64-bit RISC-V core in 22-nm FDSOI

technology.” IEEE Transactions on Very Large Scale

Integration (VLSI) Systems 27.11 (2019): 2629-2640.

[3] Quévremont, J. “An Open-Source Application Core:

CVA6 from the OpenHW Group” Spring 2022 RISC-V

Week. 2022.

[4] Coulon, J.-R. “Verification of the CVA6 Open Source

Core”, Spring 2022 RISC-V Week. 2022.

[5] https://github.com/openhwgroup/meta-cva6-yocto

[6] https://github.com/openhwgroup/core-v-xif

[7] “Recommendations and Roadmap for European

Sovereignty in Open Source Hardware, Software and RISC-

V Technologies”, August 2022, https://digital-

strategy.ec.europa.eu/en/library/recommendations-and-

roadmap-european-sovereignty-open-source-hardware-

software-and-risc-v

Acknowledgements

These activities are supported by the FRACTAL and

TRISTAN projects, which have received funding from the

Key Digital Technologies Joint Undertaking (KDT JU)

under grant agreements 877056 and 101095947. The JU

receives support from the European Union’s Horizon Europe

research and innovation program. The present action reflects

only the authors’ view; the European Commission and the

JU are not responsible for any use that may be made of the

information it contains.

https://github.com/openhwgroup/cva6/
https://github.com/openhwgroup/meta-cva6-yocto
https://github.com/openhwgroup/core-v-xif
https://digital-strategy.ec.europa.eu/en/library/recommendations-and-roadmap-european-sovereignty-open-source-hardware-software-and-risc-v
https://digital-strategy.ec.europa.eu/en/library/recommendations-and-roadmap-european-sovereignty-open-source-hardware-software-and-risc-v
https://digital-strategy.ec.europa.eu/en/library/recommendations-and-roadmap-european-sovereignty-open-source-hardware-software-and-risc-v
https://digital-strategy.ec.europa.eu/en/library/recommendations-and-roadmap-european-sovereignty-open-source-hardware-software-and-risc-v

	Summary
	Introduction
	Optimizations for FPGA Targets
	Domain-Specific Acceleration
	Embedded Linux Support
	Conclusion
	References
	Acknowledgements

